BJ1042輕型載貨汽車前懸架設(shè)計【前雙橫臂獨立懸架】
購買設(shè)計請充值后下載,資源目錄下的文件所見即所得,都可以點開預(yù)覽,資料完整,充值下載可得到資源目錄里的所有文件。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
本 科 生 畢 業(yè) 設(shè) 計電算程序題目 BJ1042輕型載貨汽車 前懸架設(shè)計學(xué)生姓名 專 業(yè) 班 級 指導(dǎo)教師 程序說明書l 程序說明雙橫臂獨立懸架的車輛需要有良好的行駛平順性和操縱穩(wěn)定性,就要保證懸架的剛度和靜撓度等靜力學(xué)參數(shù)的取值合理,同時還要保證當(dāng)車輪上下跳動時,前輪輪距和前輪定位參數(shù)的變化要合理。在雙橫臂獨立懸架的設(shè)計過程中,要保證它的行駛平順性和操縱穩(wěn)定性,就要對其進(jìn)行靜力學(xué)和運動學(xué)分析計算。本論文采用空間機(jī)構(gòu)運動學(xué)理論對依維柯2045車型進(jìn)行了靜力學(xué)和運動學(xué)分析。在計算過程中,需要應(yīng)用MATLAB軟件進(jìn)行編程計算。本論文總共編了3段程序。第一段程序用來求當(dāng)懸架的地面支承力N變化時,車輪跳動的變化量。第二段程序用來求滿載靜平衡時導(dǎo)向機(jī)構(gòu)各點坐標(biāo)。第三段程序用來求前輪輪距和前輪定位參數(shù)隨車輪跳動的變化量,并繪出曲線。計算結(jié)果見程序說明書的最后一節(jié),對結(jié)果的分析見設(shè)計說明書。l 程序框圖第一段程序的程序框圖 程序框圖說明:1)賦值包括線段a,b,c,d,e,f的長度(含義見設(shè)計說明書的3.4節(jié))和地面支承力N2)求Dw的公式為Dw=Dy*0.3541+Dz*0.9324alfa1=abs(Dw*0.255/6602.19) 3)給O1,O2,B0,D0,G0點的坐標(biāo)賦值(各點坐標(biāo)的含義見說明書3.4節(jié)的圖3-14) 4)求Q1的公式見設(shè)計說明書中的公式(3-50) 5)huangjin函數(shù)用來求當(dāng)上橫臂擺alfa2度時,下橫臂擺動的角度 6)fbeta函數(shù)用來求BD間的距離 7)求出deta-z后應(yīng)用公式求出剛度后即可求出其它的靜力學(xué)參數(shù)。第二段程序框圖程序框圖說明: 1)求B、E、F、G、點坐標(biāo)的公式請見設(shè)計說明書第三章關(guān)于運動學(xué)分析部分,有詳細(xì)的推導(dǎo)過程。 2)huangjin和fbeta子函數(shù)的作用同第一段函數(shù)。第三段程序框圖程序框圖說明: 1)給初始滿載平衡位置各點坐標(biāo)賦初值和各線段長度賦初值(具體請見源程序及說明書的第3.3節(jié)) 2)各公式的推導(dǎo)請見第三章所講的運動分析計算過程l 程序清單(1)靜力學(xué)計算MATLAB程序a=abs(334.8671-237.7386) %給各變量賦初值b=abs(275.8781-237.7386)c=abs(374.6451-92.2166)d=abs(694.5195-374.6451)e=abs(3.69-2.3305)f=abs(3.69-0)N=(1950-189)/2*9.8+NO1B=0,(275.8781+95.57)/385,(-374.6451+273.39)/385B=N*a/(0.2630*b-0.9648*c); %求B點受到的合力Dy=-0.9648*B %D點受到的力在Y軸方向的投影Dz=0.2630*B-N %D點受到的力在Z軸方向的投影U=1,0,0;V=0,237.7386/255,-92.166/255;W=0,sqrt(1-0.93522),sqrt(1-0.36142);Dw=Dy*0.3541+Dz*0.9324 %D點受到的力在W軸方向的投影alfa1=abs(Dw*0.255/6602.19) %扭桿的轉(zhuǎn)角alfa2=0.2989-alfa1O1=3.69,-95.57,-273.39; %各點的坐標(biāo)賦初值O2=0,0,0;B0=3.69,275.8781,-374.6451;D0=0,237.7386,-92.2166;G0=2.3305,334.8671,-694.5195;d=285; %各段線段長度賦初值LDE=180;LBE=105;LEF=93;LFG=420;LO1B=385;LO2D=255;c=10.4*pi/180;lamda=LBE/LDE;q0=cos(alfa2/2);q1=sin(alfa2/2);Q1=2*(q02+q12)-1 0 0;0 2*q02-1 -2*q0*q1;0 2*q0*q1 2*q02-1; %求坐標(biāo)變換鋸陣Q1D=Q1*(D0-O2)+O2; %求D點坐標(biāo)a=alfa2-25*pi/180;b=alfa2+25*pi/180;beta=huangjin(D,d,B0,O1,a,b); %調(diào)用函數(shù)求當(dāng)上橫臂擺alfa2度時,下橫臂擺動的角度p0=cos(beta/2);p1=sin(beta/2);Q2=2*(p02+p12)-1 0 0;0 2*p02-1 -2*p0*p1;0 2*p0*p1 2*p02-1; %求坐標(biāo)變換鋸陣Q2B=Q2*(B0-O1)+O1; %求B點的坐標(biāo)E=B/(1+lamda)+D*lamda/(1+lamda); %求E點的坐標(biāo)bet1=asin(D(1)-B(1)/(d*cos(c);bet2=asin(B(2)-D(2)/(d*sqrt(sin(c)2+cos(c)2*cos(bet1)2)-atan(tan(c)/cos(bet1);F=E+0;LEF*cos(bet2);LEF*sin(bet2); %求F點的坐標(biāo)G=F+0;LFG*sin(bet2);-LFG*cos(bet2); %求G點的坐標(biāo)deta_z=G(3)-G0(3) %求G點的Z軸坐標(biāo)差坐標(biāo) (2)求平衡位置坐標(biāo)的MATLAB程序主函數(shù):O1=3.69,-95.57,-273.39; %給各變量賦初值O2=0,0,0;B0=3.69,272.61,-385.95;D0=0,232.95,-103.72;d=285;LDE=180;LBE=105;LEF=93;LFG=420;LO1B=385;LO2D=255;c=10.4*pi/180;lamda=LBE/LDE;alfa=2.8*pi/180;q0=cos(alfa/2);q1=sin(alfa/2);Q1=2*(q02+q12)-1 0 0;0 2*q02-1 -2*q0*q1;0 2*q0*q1 2*q02-1; D=Q1*(D0-O2)+O2 %求D點坐標(biāo) a=alfa-25*pi/180;b=alfa+25*pi/180;beta=huangjin(D,d,B0,O1,a,b); %調(diào)用函數(shù)求當(dāng)上橫臂擺alfa2度時,下橫臂擺動的角度p0=cos(beta/2);p1=sin(beta/2); Q2=2*(p02+p12)-1 0 0;0 2*p02-1 -2*p0*p1;0 2*p0*p1 2*p02-1; B=Q2*(B0-O1)+O1 %求B點坐標(biāo) E=B/(1+lamda)+D*lamda/(1+lamda) %求E點坐標(biāo) bet1=asin(D(1)-B(1)/(d*cos(c);bet2=asin(B(2)-D(2)/(d*sqrt(sin(c)2+cos(c)2*cos(bet1)2)-atan(tan(c)/cos(bet1); F=E+0;LEF*cos(bet2);LEF*sin(bet2) %求F點坐標(biāo) G=F+0;LFG*sin(bet2);-LFG*cos(bet2) %求G點坐標(biāo)子函數(shù)1(黃金分割法求函數(shù)極小值點):%用來求上橫臂擺動角時,相應(yīng)下橫臂擺角function beta=huangjin(D,d,B0,O1,a,b)lamga=(sqrt(5)-1)/2;t1=b-lamga*(b-a);t2=a+lamga*(b-a);while abs(t1-t2)=1e-4;f1=fbeta(D,t1,d,B0,O1);f2=fbeta(D,t2,d,B0,O1);if f1=1e-4;t1=b-lamga*(b-a);t2=a+lamga*(b-a);f1=fbetap(B,t1,d,D0,O2);f2=fbetap(B,t2,d,D0,O2);if f1f2 b=t2;else a=t1;endi=i+1;endbeta=(t1+t2)/2;l 計算結(jié)果 第一段程序的運行結(jié)果:當(dāng)N1=50N時,G點的Z=0.4168 mm(車輪上跳量)當(dāng)N2=-25N時,G點的Z=-0.2208mm(車輪下跳量) 第二段程序的運行結(jié)果:B=3.69,275.8781,-374.6451,D=0,237.7386,-92.2166,E=2.3305,261.8267,-270.5925,F(xiàn)=2.3305,354.7227,-274.9891,G=2.3305,334.8671,-694.5195 第三段程序的運行結(jié)果:圖1 輪距隨著車輪跳動時的變化曲線 圖2 車輪外傾角隨車輪跳動時的變化曲線圖3 主銷后傾角隨車輪跳動時的變化曲線圖4 主銷內(nèi)傾角隨車輪跳動時的變化曲線圖5 車輪前束角隨車輪跳動時的變化曲線對結(jié)果的分析見設(shè)計說明書
收藏