高考數(shù)學(xué)(精講+精練+精析)專題4_1 三角函數(shù)的圖象與性質(zhì)試題 理(含解析)
《高考數(shù)學(xué)(精講+精練+精析)專題4_1 三角函數(shù)的圖象與性質(zhì)試題 理(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)(精講+精練+精析)專題4_1 三角函數(shù)的圖象與性質(zhì)試題 理(含解析)(36頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專題4.1 三角函數(shù)的圖象與性質(zhì) 【三年高考】 1. 【2016高考新課標(biāo)1卷】已知函數(shù) 為的零點(diǎn),為圖像的對(duì)稱軸,且在單調(diào),則的最大值為( ) (A)11(B)9(C)7(D)5 【答案】B 2.【2016高考新課標(biāo)2理數(shù)】若將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度,則平移后圖象的對(duì)稱軸為( ) (A) (B) (C) (D) 【答案】B 【解析】由題意,將函數(shù)的圖像向左平移個(gè)單位得,則平移后函數(shù)的對(duì)稱軸為,即,故選B. 3.【2016年高考北京理數(shù)】將函數(shù)圖象上的點(diǎn)向左平移() 個(gè)單位長(zhǎng)度得到點(diǎn),若位于函數(shù)的圖象上,則( ) A.,的最小值為 B. ,的最小值為 C.,的最小值為 D.,的最小值為 【答案】A 4.【2016高考江蘇卷】定義在區(qū)間上的函數(shù)的圖象與的圖象的交點(diǎn)個(gè)數(shù)是 . 【答案】7 【解析】由,因?yàn)?,所以?個(gè) 5.【2016高考天津理數(shù)】已知函數(shù)f(x)=4tanxsin()cos()-. (Ⅰ)求f(x)的定義域與最小正周期; (Ⅱ)討論f(x)在區(qū)間[]上的單調(diào)性. 【解析】 解:的定義域?yàn)? .所以, 的最小正周期 解:令函數(shù)的單調(diào)遞增區(qū)間是由,得 設(shè),易知.所以, 當(dāng)時(shí), 在區(qū)間上單調(diào)遞增, 在區(qū)間上單調(diào)遞減. 6. 【2015高考陜西,理3】如圖,某港口一天6時(shí)到18時(shí)的水深變化曲線近似滿足函數(shù),據(jù)此函數(shù)可知,這段時(shí)間水深(單位:m)的最大值為( ) A.5 B.6 C.8 D.10 【答案】C 7.【2015高考安徽,理10】已知函數(shù)(,,均為正的常數(shù))的最小正周期為,當(dāng)時(shí),函數(shù)取得最小值,則下列結(jié)論正確的是( ) (A) (B) (C) (D) 【答案】A 【解析】由題意,,,所以,則,而當(dāng)時(shí),,解得,所以,則當(dāng),即時(shí),取得最大值.要比較的大小,只需判斷與最近的最高點(diǎn)處對(duì)稱軸的距離大小,距離越大,值越小,易知與比較近,與比較近,所以,當(dāng)時(shí),,此時(shí),,當(dāng)時(shí),,此時(shí),所以,故選A. 8.【2015高考湖南,理9】將函數(shù)的圖像向右平移個(gè)單位后得到函數(shù)的圖像,若對(duì)滿足的,,有,則( ) A. B. C. D. 【答案】D. 9.【2015高考福建,理19】已知函數(shù)的圖像是由函數(shù)的圖像經(jīng)如下變換得到:先將圖像上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變),再將所得到的圖像向右平移個(gè)單位長(zhǎng)度. (Ⅰ)求函數(shù)的解析式,并求其圖像的對(duì)稱軸方程; (Ⅱ)已知關(guān)于的方程在內(nèi)有兩個(gè)不同的解. (1)求實(shí)數(shù)m的取值范圍; (2)證明: 【答案】(Ⅰ) ,;(Ⅱ)(1);(2)詳見解析. 【解析】解法一:(1)將的圖像上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)得到的圖像,再將的圖像向右平移個(gè)單位長(zhǎng)度后得到的圖像,故,從而函數(shù)圖像的對(duì)稱軸方程為 (2)1) (其中),依題意,在區(qū)間內(nèi)有兩個(gè)不同的解當(dāng)且僅當(dāng),故m的取值范圍是. 2)因?yàn)槭欠匠淘趨^(qū)間內(nèi)有兩個(gè)不同的解,所以,.當(dāng)時(shí),當(dāng)時(shí), 所以 10. 【2014高考湖南卷第9題】已知函數(shù)且則函數(shù)的圖象的一條對(duì)稱軸是( ) A. B. C. D. 【答案】A 11.【2014全國(guó)1高考理第6題】如圖,圖O的半徑為1,A是圓上的定點(diǎn),P是圓上的動(dòng)點(diǎn),角x的始邊為射線OA,終邊為射線OP,過(guò)點(diǎn)P作直線OA的垂線,垂足為M,將點(diǎn)M到直線OP的距離表示成x的函數(shù),則的圖像大致為( ) A B C D 【答案】C 【解析】如圖所示,當(dāng)時(shí),在中,.在中, ;當(dāng)時(shí),在中,,在中,,所以當(dāng)時(shí),的圖象大致為C. 12.【2014高考天津第15題】已知函數(shù),. (Ⅰ)求的最小正周期; (Ⅱ)求在閉區(qū)間上的最大值和最小值. 【三年高考命題回顧】 縱觀前三年各地高考試題, 三角函數(shù)的周期性、單調(diào)性、最值,三角函數(shù)圖像變換等是高考的熱點(diǎn),每年文理均涉及到一道三角函數(shù)性質(zhì)與圖像的題目,題型既有選擇題、填空題,又有解答題,難度屬于中、低檔;常與三角恒等變換交匯命題,在考查三角函數(shù)性質(zhì)的同時(shí),又考查三角恒等變換的方法與技巧,注重考查函數(shù)與方程、轉(zhuǎn)化與化歸等思想方法. 【2017年高考復(fù)習(xí)建議與高考命題預(yù)測(cè)】 由前三年的高考命題形式可以看出 , 高考降低了對(duì)三角變換的考查要求,而加強(qiáng)了對(duì)三角函數(shù)的圖象與性質(zhì)的考查,因?yàn)楹瘮?shù)的性質(zhì)是研究函數(shù)的一個(gè)重要內(nèi)容,是學(xué)習(xí)高等數(shù)學(xué)和應(yīng)用技術(shù)學(xué)科的基礎(chǔ),又是解決生產(chǎn)實(shí)際問題的工具,因此三角函數(shù)的圖象與性質(zhì)是本章復(fù)習(xí)的重點(diǎn). 從高考試題來(lái)看,三角函數(shù)的周期性,單調(diào)性,對(duì)稱性,最值,圖像變換等是高考的熱點(diǎn),常與三角恒等變換交匯命題,在考查三角函數(shù)性質(zhì)的同時(shí),又考查三角恒等變換的方法與技巧,注重考查函數(shù)與方程、轉(zhuǎn)化與化歸等思想方法.其特點(diǎn)如下:(1)考小題,重基礎(chǔ):小題其考查重點(diǎn)在于基礎(chǔ)知識(shí):解析式;圖象與圖象變換;兩域(定義域、值域);四性(單調(diào)性、奇偶性、對(duì)稱性、周期性).(2)考大題,難度明顯降低:有關(guān)三角函數(shù)的大題即解答題,通過(guò)公式變形轉(zhuǎn)換來(lái)考查思維能力的題目已經(jīng)很少,而著重考查基礎(chǔ)知識(shí)和基本技能與方法的題目卻在增加.在復(fù)習(xí)時(shí)要充分運(yùn)用數(shù)形結(jié)合的思想,把圖象與性質(zhì)結(jié)合起來(lái),即利用圖象的直觀性得出函數(shù)的性質(zhì),或由單位圓上線段表示的三角函數(shù)值來(lái)獲得函數(shù)的性質(zhì),同時(shí)也要能利用函數(shù)的性質(zhì)來(lái)描繪函數(shù)的圖象,這樣既有利于掌握函數(shù)的圖象與性質(zhì),又能熟練地運(yùn)用數(shù)形結(jié)合的思想方法. 從2016年高考試題來(lái)看,特別是新課標(biāo)1卷第17題考察了解三角形,故預(yù)測(cè)2017年高考可能以三角函數(shù)的周期性、單調(diào)性、最值、奇偶性為主要考點(diǎn),可能出一個(gè)大題.也有可能仍將以三角函數(shù)的周期性、單調(diào)性、最值、奇偶性中選一個(gè)出一道選擇題或填空題,難度不大. 【2017年高考考點(diǎn)定位】 本節(jié)內(nèi)容高考的重點(diǎn)就是利用三角函數(shù)性質(zhì),如奇偶性、單調(diào)性、周期性、對(duì)稱性、有界性及“五點(diǎn)作圖法”等,求解三角函數(shù)的值、求參數(shù)、求最值、求值域、求單調(diào)區(qū)間等問題,三角函數(shù)的圖象主要考查其變換,題型既有選擇題也有填空題,也有解答題,難度中等偏下,而小題目綜合化是這部分內(nèi)容的考查一種趨勢(shì). 【考點(diǎn)1】三角函數(shù)的圖象與簡(jiǎn)單性質(zhì) 【備考知識(shí)梳理】 1.三角函數(shù)線 三角函數(shù)線是通過(guò)有向線段直觀地表示出角的各種三角函數(shù)值的一種圖示方法.利用三角函數(shù)線在解決比較三角函數(shù)值大小、解三角方程及三角不等式等問題時(shí),十分方便. 以坐標(biāo)原點(diǎn)為圓心,以單位長(zhǎng)度1為半徑畫一個(gè)圓,這個(gè)圓就叫做單位圓(注意:這個(gè)單位長(zhǎng)度不一定就是1厘米或1米).當(dāng)角為第一象限角時(shí),則其終邊與單位圓必有一個(gè)交點(diǎn),過(guò)點(diǎn)作軸交軸于點(diǎn),根據(jù)三角函數(shù)的定義:;. O x y a角的終邊 P T M A 我們知道,指標(biāo)坐標(biāo)系內(nèi)點(diǎn)的坐標(biāo)與坐標(biāo)軸的方向有關(guān).當(dāng)角的終邊不在坐標(biāo)軸時(shí),以為始點(diǎn)、為終點(diǎn),規(guī)定:當(dāng)線段與軸同向時(shí),的方向?yàn)檎?,且有正值;?dāng)線段與軸反向時(shí),的方向?yàn)樨?fù)向,且有正值;其中為點(diǎn)的橫坐標(biāo).這樣,無(wú)論那種情況都有: 同理,當(dāng)角的終邊不在軸上時(shí),以為始點(diǎn)、為終點(diǎn), 規(guī)定:當(dāng)線段與軸同向時(shí),的方向?yàn)檎?,且有正值;?dāng)線段與軸反向時(shí),的方向?yàn)樨?fù)向,且有正值;其中為點(diǎn)的橫坐標(biāo). 這樣,無(wú)論那種情況都有.像這種被看作帶有方向的線段,叫做有向線段. 如上圖,過(guò)點(diǎn)作單位圓的切線,這條切線必然平行于軸,設(shè)它與的終邊交于點(diǎn),請(qǐng)根據(jù)正切函數(shù)的定義與相似三角形的知識(shí),借助有向線段,我們有: 我們把這三條與單位圓有關(guān)的有向線段,分別叫做角的正弦線、余弦線、正切線,統(tǒng)稱為三角函數(shù)線. 性質(zhì) 圖象 定義域 值域 最值 當(dāng)時(shí),;當(dāng)時(shí),. 當(dāng)時(shí),;當(dāng)時(shí),. 既無(wú)最大值,也無(wú)最小值 周期性 奇偶性 ,奇函數(shù) 偶函數(shù) 奇函數(shù) 單調(diào)性 在上是增函數(shù);在上是減函數(shù). 在上是增函數(shù);在上是減函數(shù). 在上是增函數(shù). 對(duì)稱性 對(duì)稱中心 對(duì)稱軸,既是中心對(duì)稱又是軸對(duì)稱圖形. 對(duì)稱中心 對(duì)稱軸,既是中心對(duì)稱又是軸對(duì)稱圖形. 對(duì)稱中心 無(wú)對(duì)稱軸,是中心對(duì)稱但不是軸對(duì)稱圖形. 2.正弦函數(shù),余弦函數(shù),正切函數(shù)的圖象與性質(zhì) 3.(五點(diǎn)法),先列表,令,求出對(duì)應(yīng)的五個(gè)的值和五個(gè)值,再根據(jù)求出的對(duì)應(yīng)的五個(gè)點(diǎn)的坐標(biāo)描出五個(gè)點(diǎn),再把五個(gè)點(diǎn)利用平滑的曲線連接起來(lái),即得到在一個(gè)周期的圖像,最后把這個(gè)周期的圖像以周期為單位,向左右兩邊平移,則得到函數(shù)的圖像. 【規(guī)律方法技巧】 用“五點(diǎn)法”作圖應(yīng)抓住四條:①將原函數(shù)化為或的形式;②求出周期;③求出振幅;④列出一個(gè)周期內(nèi)的五個(gè)特殊點(diǎn),當(dāng)畫出某指定區(qū)間上的圖象時(shí),應(yīng)列出該區(qū)間內(nèi)的特殊點(diǎn). 【考點(diǎn)針對(duì)訓(xùn)練】 1. 【河北省衡水中學(xué)2016屆高三四調(diào)】函數(shù)()的大致圖象是( ) A. B. C. D. 【答案】C 【解析】由于當(dāng)時(shí),,, 故選C. 2.函數(shù)是( ). A.最小正周期為的奇函數(shù) B.最小正周期為的奇函數(shù) C.最小正周期為的偶函數(shù) D.最小正周期為的偶函數(shù) 【答案】C 【考點(diǎn)2】三角函數(shù)圖象的變換 【備考知識(shí)梳理】 1.函數(shù)圖像的變換(平移變換和上下變換) 平移變換:左加右減,上加下減 把函數(shù)向左平移個(gè)單位,得到函數(shù)的圖像; 把函數(shù)向右平移個(gè)單位,得到函數(shù)的圖像; 把函數(shù)向上平移個(gè)單位,得到函數(shù)的圖像; 把函數(shù)向下平移個(gè)單位,得到函數(shù)的圖像. 伸縮變換: 把函數(shù)圖像的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的,得到函數(shù)的圖像; 把函數(shù)圖像的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來(lái)的,得到函數(shù)的圖像; 把函數(shù)圖像的橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)到原來(lái)的,得到函數(shù)的圖像; 把函數(shù)圖像的橫坐標(biāo)不變,縱坐標(biāo)縮短到原來(lái)的,得到函數(shù)的圖像. 2.由的圖象變換出的圖象一般有兩個(gè)途徑,只有區(qū)別開這兩個(gè)途徑,才能靈活進(jìn)行圖象變換.利用圖象的變換作圖象時(shí),提倡先平移后伸縮,但先伸縮后平移也經(jīng)常出現(xiàn)無(wú)論哪種變形,請(qǐng)切記每一個(gè)變換總是對(duì)字母x而言,即圖象變換要看“變量”起多大變化,而不是“角變化”多少. 途徑一:先平移變換再周期變換(伸縮變換)先將的圖象向左或向右平移個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(),便得的圖象 途徑二:先周期變換(伸縮變換)再平移變換:先將的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(),再沿軸向左()或向右()平移個(gè)單位,便得的圖象. 注意:函數(shù)的圖象,可以看作把曲線上所有點(diǎn)向左(當(dāng)時(shí))或向右(當(dāng)時(shí))平行移動(dòng)個(gè)單位長(zhǎng)度而得到. 【規(guī)律方法技巧】 1. 在解決函數(shù)圖像的變換問題時(shí),要遵循“只能對(duì)函數(shù)關(guān)系式中的變換”的原則,寫出每一次的變換所得圖象對(duì)應(yīng)的解析式,這樣才能避免出錯(cuò). 2. 圖像變換法.若函數(shù)圖像可由某個(gè)基本函數(shù)的圖像經(jīng)過(guò)平移、翻折、對(duì)稱得到,可利用圖像變換作出,但要注意變換順序.對(duì)不能直接找到熟悉的基本函數(shù)的要先變形,并應(yīng)注意平移變換與伸縮變換的順序?qū)ψ儞Q單位及解析式的影響. 3.解決圖象變換問題時(shí),要分清變換的對(duì)象及平移(伸縮)的大小,避免出現(xiàn)錯(cuò)誤. 4.特別提醒:進(jìn)行三角函數(shù)的圖象變換時(shí),要注意無(wú)論進(jìn)行什么樣的變換都是變換變量本身. 【考點(diǎn)針對(duì)訓(xùn)練】 1. 【2016年江西師大附中高三上學(xué)期期末】已知函數(shù)向右平移個(gè)單位后 所得的圖像與原函數(shù)圖像關(guān)于軸對(duì)稱,則的最小正值為( ) A. B. C. D. 【答案】D 2. 【2016年江西師大附中高三二?!恳阎瘮?shù)向右平移個(gè)單位后,所得的圖像與原函數(shù)圖像關(guān)于軸對(duì)稱,則的最小正值為( ) A. B. C. D. 【答案】D 【解析】原函數(shù)向右平移個(gè)單位后所得函數(shù)為其與原函數(shù)關(guān)于軸對(duì)稱,則必有,由三角函數(shù)誘導(dǎo)公式可知的最小正值為,故本題的正確選項(xiàng)為D. 【考點(diǎn)3】求三角函數(shù)解析式 【備考知識(shí)梳理】 1. 由的圖象求其函數(shù)式: 已知函數(shù)的圖象求解析式時(shí),常采用待定系數(shù)法,由圖中的最高點(diǎn)、最低點(diǎn)或特殊點(diǎn)求A;由函數(shù)的周期確定;確定常根據(jù)“五點(diǎn)法”中的五個(gè)點(diǎn)求解,其中一般把第一個(gè)零點(diǎn)作為突破口,可以從圖象的升降找準(zhǔn)第一個(gè)零點(diǎn)的位置. 2.利用圖象變換求解析式: 由的圖象向左或向右平移個(gè)單位,,得到函數(shù),將圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(),便得,將圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的倍(),便得. 【規(guī)律方法技巧】 1.根據(jù)的圖象求其解析式的問題,主要從以下四個(gè)方面來(lái)考慮: (1)A的確定:根據(jù)圖象的最高點(diǎn)和最低點(diǎn),即A=; (2)k的確定:根據(jù)圖象的最高點(diǎn)和最低點(diǎn),即k=; (3) 的確定:結(jié)合圖象,先求出周期T,然后由T=(ω>0)來(lái)確定ω; (4)φ的確定:由函數(shù)最開始與x軸的交點(diǎn)的橫坐標(biāo)為 (即令,)確定.將點(diǎn)的坐標(biāo)代入解析式時(shí),要注意選擇的點(diǎn)屬于“五點(diǎn)法”中的哪一個(gè)點(diǎn).“第一點(diǎn)”(即圖象上升時(shí)與x軸的交點(diǎn))為,其他依次類推即可. 2.在圖象變換過(guò)程中務(wù)必分清是先相位變換,還是先周期變換.變換只是相對(duì)于其中的自變量x而言的,如果x的系數(shù)不是1,就要把這個(gè)系數(shù)提取后再確定變換的單位長(zhǎng)度和方向. 【考點(diǎn)針對(duì)訓(xùn)練】 1. 【2016屆邯鄲市第一中學(xué)高三十研】已知的部分圖像如圖所示,則的表達(dá)式為( ) A. B. C. D. 【答案】B 2. 【2016屆山東省東營(yíng)市勝利一中高三最后一卷】定義矩陣.若,則的圖象向右平移個(gè)單位得到的函數(shù)解析式為( ) A. B. C. D. 【答案】D 【考點(diǎn)4】三角函數(shù)的單調(diào)性 【備考知識(shí)梳理】 1.三角函數(shù)的單調(diào)區(qū)間: 的遞增區(qū)間是,遞減區(qū)間是; 的遞增區(qū)間是,遞減區(qū)間是, 的遞增區(qū)間是, 2.復(fù)合函數(shù)的單調(diào)性 設(shè),都是單調(diào)函數(shù),則在上也是單調(diào)函數(shù),其單調(diào)性由“同增異減”來(lái)確定,即“里外”函數(shù)增減性相同,復(fù)合函數(shù)為增函數(shù),“里外”函數(shù)增減性相反,復(fù)合函數(shù)為減函數(shù),如下表 增 增 增 增 減 減 減 增 減 減 減 增 【規(guī)律方法技巧】 1. 求形如或 (其中A≠0,)的函數(shù)的單調(diào)區(qū)間,可以通過(guò)解不等式的方法去解答,列不等式的原則是:①把“ ()”視為一個(gè)“整體”;②A>0(A<0)時(shí),所列不等式的方向與 (), ()的單調(diào)區(qū)間對(duì)應(yīng)的不等式方向相同(反). 2. 如何確定函數(shù)當(dāng)時(shí)函數(shù)的單調(diào)性 對(duì)于函數(shù)求其單調(diào)區(qū)間,要特別注意的正負(fù),若為負(fù)值,需要利用誘導(dǎo)公式把負(fù)號(hào)提出來(lái),轉(zhuǎn)化為的形式,然后求其單調(diào)遞增區(qū)間,應(yīng)把放在正弦函數(shù)的遞減區(qū)間之內(nèi);若求其遞減區(qū)間,應(yīng)把放在正弦函數(shù)的遞增區(qū)間之內(nèi). 3.求函數(shù) (或,或)的單調(diào)區(qū)間的步驟: (1)將化為正. (2)將看成一個(gè)整體,由三角函數(shù)的單調(diào)性求解. 5.特別提醒:解答三角函數(shù)的問題時(shí),不要漏了“”. 【考點(diǎn)針對(duì)訓(xùn)練】 1. 【2016年安慶市高三二?!恳阎瘮?shù)(,,)的部分圖象如圖所示,則的遞增區(qū)間為( ) A., B., C., D., 【答案】B 【解析】由圖象可知,,所以,故.由,得(). ∵ ∴,所以. 由(),得().或:,所以,, ,所以的單增區(qū)間是,.故選B. 2. 【2016年河南八市高三聯(lián)考】已知函數(shù),將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,再將所得函數(shù)圖象向右平移個(gè)單位,得到函數(shù)的圖象,則函數(shù)的一個(gè)單調(diào)遞增區(qū)間為( ) A. B. C. D. 【答案】B 【考點(diǎn)5】三角函數(shù)的奇偶性 【備考知識(shí)梳理】 1.函數(shù)的奇偶性的定義; 對(duì)定義域內(nèi)任意,如果有=,則函數(shù)是偶函數(shù),如果有=-,則函數(shù)是奇函數(shù),否則是非奇非偶函數(shù) 2.奇偶函數(shù)的性質(zhì): (1)定義域關(guān)于原點(diǎn)對(duì)稱;(2)偶函數(shù)的圖象關(guān)于軸對(duì)稱,奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱; 3.為偶函數(shù). 4.若奇函數(shù)的定義域包含,則. 5. 為奇函數(shù),為偶函數(shù),為奇函數(shù). 【規(guī)律方法技巧】 1. 一般根據(jù)函數(shù)的奇偶性的定義解答,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則函數(shù)一定是非奇非偶函數(shù);如果函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,則繼續(xù)求;最后比較和的關(guān)系,如果有=,則函數(shù)是偶函數(shù),如果有=-,則函數(shù)是奇函數(shù),否則是非奇非偶函數(shù). 2. 如何判斷函數(shù)的奇偶性:根據(jù)三角函數(shù)的奇偶性,利用誘導(dǎo)公式可推得函數(shù)的奇偶性,常見的結(jié)論如下: (1)若為偶函數(shù),則有;若為奇函數(shù)則有; (2)若為偶函數(shù),則有;若為奇函數(shù)則有; (3)若為奇函數(shù)則有. 【考點(diǎn)針對(duì)訓(xùn)練】 1. 【2016屆湖北省沙市中學(xué)高三考前最后一卷】已知函數(shù)是偶函數(shù),則下列結(jié)論可能成立的是( ) A. B. C. D. 【答案】B 2. 【2016年淮南高三二?!恳阎瘮?shù)滿足對(duì)恒成立,則函數(shù)( ) A.一定為奇函數(shù) B.一定為偶函數(shù) C. 一定為奇函數(shù) D.一定為偶函數(shù) 【答案】D 【解析】由題意得,時(shí),則,,所以,此時(shí)函數(shù)為偶函數(shù),故選D. 【考點(diǎn)6】三角函數(shù)的周期性 【備考知識(shí)梳理】 1. 周期函數(shù)的定義 一般地,對(duì)于函數(shù),如果存在一個(gè)非零常數(shù),使得定義域內(nèi)的每一個(gè)值,都有 ,那么函數(shù)就叫做周期函數(shù),非零常數(shù) 叫做這個(gè)函數(shù)的周期. 2.最小正周期 對(duì)于一個(gè)周期函數(shù),如果它所有的周期中存在一個(gè)最小的正數(shù) ,那么這個(gè)最小的正數(shù) 就叫做的最小正周期. 2. ,周期為,周期為. 【規(guī)律方法技巧】 1.求三角函數(shù)的周期的方法 (1)定義法:使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有f (x+T)=f (x).利用定義我們可采用取值進(jìn)行驗(yàn)證的思路,非常適合選擇題; (2)公式法:和的最小正周期都是,的周期為.要特別注意兩個(gè)公式不要弄混; (3)圖象法:可以畫出函數(shù)的圖象,利用圖象的重復(fù)的特征進(jìn)行確定,一般適應(yīng)于不易直接判斷,但是能夠容易畫出函數(shù)草圖的函數(shù); (4)絕對(duì)值或平方對(duì)三角函數(shù)周期性的影響:一般說(shuō)來(lái),某一周期函數(shù)解析式加絕對(duì)值或平方,其周期性是:弦減半、切不變.既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對(duì)值,其周期性不變,其它不定. 如的周期都是, 但的周期為,而,的周期不變. 2.使用周期公式,必須先將解析式化為或的形式;正弦余弦函數(shù)的最小正周期是,正切函數(shù)的最小正周期公式是;注意一定要注意加絕對(duì)值. 【考點(diǎn)針對(duì)訓(xùn)練】 1. 【2016屆遼寧大連八中、二十四中高三模擬】函數(shù)的最小正周期是( ) A. B. C. D. 【答案】B 【解析】 ,所以最小正周期為,故選B. 2. 【湖南師范大學(xué)附屬中學(xué)2016屆高三月考(三)】已知函數(shù)的圖象關(guān)于直線對(duì)稱,其中為常數(shù),且. (1)求函數(shù)的最小正周期; (2)若存在,使,求的取值范圍. 【考點(diǎn)7】三角函數(shù)的最值 【備考知識(shí) ,的值域?yàn)?的值域?yàn)? 【規(guī)律方法技巧】 掌握三種類型,順利求解三角最值:三角函數(shù)的最值既是高考中的一個(gè)重點(diǎn),也是一個(gè)難點(diǎn),其類型豐富,解決的方法比較多.但是歸納起來(lái)常見的有下面三種類型: (1)可化為型函數(shù)值域: 利用三角公式對(duì)原函數(shù)進(jìn)行化簡(jiǎn)、整理,最終得到的形式,然后借助題目中給定的的范圍,確定的范圍,最后利用的圖象確定函數(shù)的值域. 如: ①,設(shè)化為一次函數(shù)在閉區(qū)間上的最值求之; ②,引入輔助角,化為求解方法同類型①; (2)可化為型求函數(shù)的值域: 首先借助三角公式,把函數(shù)化成型,然后采用換元法,即令,構(gòu)造關(guān)于的函數(shù),然后根據(jù)具體的結(jié)構(gòu),采取相應(yīng)的方法求解.如:,化為二次函數(shù)在上的最值求之;,設(shè)化為二次函數(shù)在閉區(qū)間上的最值求之;,可轉(zhuǎn)化為對(duì)號(hào)函數(shù)求值域. (3)利用數(shù)性結(jié)合思想求函數(shù)的值域: 此類題目需分析函數(shù)的結(jié)構(gòu)特征,看能否轉(zhuǎn)化為有幾何含義的式子結(jié)構(gòu),有時(shí)也可以把函數(shù)圖象畫出來(lái),直接觀察確定函數(shù)的值域.如,設(shè)化為用法求值;當(dāng)時(shí),還可用平均值定理求最值;根據(jù)正弦函數(shù)的有界性,即可分析法求最值,還可“不等式”法或“數(shù)形結(jié)合”,轉(zhuǎn)化為直線的斜率的幾何含義求解. [易錯(cuò)提示] (1)在求三角函數(shù)的最值時(shí),要注意自變量x的范圍對(duì)最值的影響,往往結(jié)合圖象求解.(2)求函數(shù)f(x)=Asin(ωx+φ)的單調(diào)區(qū)間時(shí),只有當(dāng)ω>0時(shí),才可整體代入并求其解,當(dāng)ω<0時(shí),需把ω的符號(hào)化為正值后求解. 【考點(diǎn)針對(duì)訓(xùn)練】 1. 【2016屆浙江省杭州市高三第二次質(zhì)檢】函數(shù)()的最大值等于( ) A.5 B. C. D.2 【答案】B 【解析】 ,,.故選B. 2. 【河北省衡水中學(xué)2016屆高三七調(diào)】已知函數(shù)的最小正周期為,則在區(qū)間上的值域?yàn)椋? ) A. B. C. D. 【答案】A 【考點(diǎn)8】求函數(shù)的對(duì)稱性(對(duì)稱軸和對(duì)稱中心) 【備考知識(shí)梳理】 1.對(duì)稱軸與對(duì)稱中心: 的對(duì)稱軸為,對(duì)稱中心為; 的對(duì)稱軸為,對(duì)稱中心為; 對(duì)稱中心為. 2.對(duì)于和來(lái)說(shuō),對(duì)稱中心與零點(diǎn)相聯(lián)系,對(duì)稱軸與最值點(diǎn)聯(lián)系. 的圖象有無(wú)窮多條對(duì)稱軸,可由方程解出;它還有無(wú)窮多個(gè)對(duì)稱中心,它們是圖象與軸的交點(diǎn),可由,解得,即其對(duì)稱中心為. 3.相鄰兩對(duì)稱軸間的距離為,相鄰兩對(duì)稱中心間的距離也為,函數(shù)的對(duì)稱軸一定經(jīng)過(guò)圖象的最高點(diǎn)或最低點(diǎn). 【規(guī)律方法技巧】 先化成的形式再求解.其圖象的對(duì)稱軸是直線,凡是該圖象與直線的交點(diǎn)都是該圖象的對(duì)稱中心, 關(guān)鍵是記住三角函數(shù)的圖象,根據(jù)圖象并結(jié)合整體代入的基本思想即可求三角函數(shù)的對(duì)稱軸與對(duì)稱中心. 【考點(diǎn)針對(duì)訓(xùn)練】 1. 【湖北省八校2016高三第二次聯(lián)考】若的圖像關(guān)于直線對(duì)稱,且當(dāng)取最小值時(shí),,使得,則的取值范圍是( ) A. B. C. D. 【答案】D 2. 【2016年江西高三三校聯(lián)考】函數(shù)的圖像的一個(gè)對(duì)稱中心為( ) A. B. C. D. 【答案】C 【解析】,令,所以函數(shù)的圖像的一個(gè)對(duì)稱中心為,選C. 【應(yīng)試技巧點(diǎn)撥】 1.如何判斷函數(shù)的奇偶性 根據(jù)三角函數(shù)的奇偶性,利用誘導(dǎo)公式可推得函數(shù)的奇偶性,常見的結(jié)論如下: (1)若為偶函數(shù),則有;若為奇函數(shù)則有; (2)若為偶函數(shù),則有;若為奇函數(shù)則有; (3)若為奇函數(shù)則有. 2.如何確定函數(shù)當(dāng)時(shí)函數(shù)的單調(diào)性 對(duì)于函數(shù)求其單調(diào)區(qū)間,要特別注意的正負(fù),若為負(fù)值,需要利用誘導(dǎo)公式把負(fù)號(hào)提出來(lái),轉(zhuǎn)化為的形式,然后求其單調(diào)遞增區(qū)間,應(yīng)把放在正弦函數(shù)的遞減區(qū)間之內(nèi);若求其遞減區(qū)間,應(yīng)把放在正弦函數(shù)的遞增區(qū)間之內(nèi). 3.求三角函數(shù)的周期的方法 (1)定義法:使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有f (x+T)=f (x).利用定義我們可采用取值進(jìn)行驗(yàn)證的思路,非常適合選擇題; (2)公式法:和的最小正周期都是,的周期為.要特別注意兩個(gè)公式不要弄混; (3)圖象法:可以畫出函數(shù)的圖象,利用圖象的重復(fù)的特征進(jìn)行確定,一般適應(yīng)于不易直接判斷,但是能夠容易畫出函數(shù)草圖的函數(shù); (4)絕對(duì)值或平方對(duì)三角函數(shù)周期性的影響:一般說(shuō)來(lái),某一周期函數(shù)解析式加絕對(duì)值或平方,其周期性是:弦減半、切不變.既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對(duì)值,其周期性不變,其它不定. 如的周期都是, 但的周期為,而,的周期不變. 4.掌握三種類型,順利求解三角最值 三角函數(shù)的最值既是高考中的一個(gè)重點(diǎn),也是一個(gè)難點(diǎn),其類型豐富,解決的方法比較多.但是歸納起來(lái)常見的有下面三種類型: (1)可化為型函數(shù)值域: 利用三角公式對(duì)原函數(shù)進(jìn)行化簡(jiǎn)、整理,最終得到的形式,然后借助題目中給定的的范圍,確定的范圍,最后利用的圖象確定函數(shù)的值域. 如:、 等. (2)可化為型求函數(shù)的值域: 首先借助三角公式,把函數(shù)化成型,然后采用換元法,即令,構(gòu)造關(guān)于的函數(shù),然后根據(jù)具體的結(jié)構(gòu),采取相應(yīng)的方法求解.如:、可轉(zhuǎn)化為二次函數(shù)求值域;,可轉(zhuǎn)化為對(duì)號(hào)函數(shù)求值域. (3)利用數(shù)性結(jié)合思想求函數(shù)的值域: 此類題目需分析函數(shù)的結(jié)構(gòu)特征,看能否轉(zhuǎn)化為有幾何含義的式子結(jié)構(gòu),有時(shí)也可以把函數(shù)圖象畫出來(lái),直接觀察確定函數(shù)的值域.如,常轉(zhuǎn)化為直線的斜率的幾何含義求解. 二年模擬 1. 【河南省商丘市2016年高三第三次模擬】 函數(shù)的部分圖象如圖所示,則的解析式可以為( ) A. B. C. D. 【答案】D 【解析】由圖可知周期,故;由于,即,故選D. 2. 【2016屆云南省昆明一中高三第七次高考仿真模擬】將函數(shù)的圖象向右平移個(gè)單位,再將圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的倍(縱坐標(biāo)不變),所得圖象的解析式為,則的值分別為( ) A. B. C. D. 【答案】A 3. 【2016屆湖北省級(jí)示范高中聯(lián)盟高三模擬】已知函數(shù)在上有兩個(gè)零點(diǎn),則的取值范圍為( ) A. B. C. D. 【答案】B 【解析】因,故,由于函數(shù)在上單調(diào)遞增;在上單調(diào)遞減,且,故當(dāng)時(shí),函數(shù)的圖象與直線有兩個(gè)交點(diǎn),應(yīng)選B. 4. 【2016屆福建省泉州市高三5月質(zhì)檢】已知函數(shù),若,則函數(shù)的單調(diào)遞增區(qū)間為( ) A. B. C. D. 【答案】D 5. 【2016屆安徽省江南十校高三二?!咳绻瘮?shù)在區(qū)間上單調(diào)遞減,那么的取值范圍為( ) A. B. C. D. 【答案】B 【解析】因?yàn)闀r(shí),在上單調(diào)遞增,所以可以排除C、D;時(shí),在上單調(diào)遞減,在上單調(diào)遞增,因此可排除選項(xiàng)A,故選B. 6. 【2016屆陜西師大附中高三第十次模擬】函數(shù),給出下列四個(gè)命題: ①在區(qū)間上是減函數(shù);②直線是函數(shù)圖象的一條對(duì)稱軸;③函數(shù)的圖象可由函數(shù)的圖象向左平移個(gè)單位得到;④若,則的值域是. 其中,正確的命題的序號(hào)是( ) A.①② B. ②③ C.①④ D. ③④ 【答案】A 【解析】,當(dāng)時(shí),,則函數(shù)在區(qū)間上是減函數(shù),即①正確,因?yàn)椋灾本€是函數(shù)圖象的一條對(duì)稱軸,即②正確,因?yàn)?,所以函?shù)的圖象可由函數(shù)的圖象向左平移個(gè)單位得到,即③錯(cuò)誤,當(dāng)時(shí),,則函數(shù),即④錯(cuò)誤;故選A. 7. 【2016屆寧夏石嘴山三中高三四模】已知函數(shù)的最小正周期為,且對(duì),有成立,則的一個(gè)對(duì)稱中心坐標(biāo)是( ) A. B. C. D. 【答案】A 8. 【2016年山西臨汾一中高三測(cè)試】已知函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為的等差數(shù)列,把函數(shù)的圖象沿軸向左平移個(gè)單位,得到函數(shù)的圖象.若在區(qū)間上隨機(jī)取一個(gè)數(shù),則事件“”發(fā)生的概率為( ) A. B. C. D. 【答案】C 【解析】因?yàn)?,由題意知,所以,所以,把函數(shù)的圖象沿軸向左平移個(gè)單位,得,因?yàn)?,所以,即,解得,所以事件“”發(fā)生的概率為,故選C. 9.【2016屆福建廈門雙十中學(xué)高三下熱身考】已知直線是函數(shù)圖象的一條對(duì)稱軸,則直線的傾斜角為 . 【答案】 【解析】由條件,故傾斜角為. 10. 【湖南師范大學(xué)附屬中學(xué)2016屆高三上學(xué)期月考(三)文科數(shù)學(xué)試題】(本小題10分)已知函數(shù). (1)求函數(shù)的最小正周期; (2)將函數(shù)的圖象向下平移個(gè)單位,再將圖象上各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變),得到函數(shù)的圖象,求使成立的的取值集合. 11.【2015屆新高考單科綜合調(diào)研卷(浙江卷)(二)】已知,函數(shù)在上單調(diào)遞減,則的取值范圍是 ( ) A. B. C. D. 【答案】A. 【解析】結(jié)合特殊值,求解三角函數(shù)的遞減區(qū)間,并驗(yàn)證結(jié)果.取,,其減區(qū)間為,顯然,排除;取,,其減區(qū)間為,顯然,排除.選. 12.【2015屆新高考單科綜合調(diào)研卷(浙江卷)(一)】已知函數(shù),,若方程有三個(gè)不同的實(shí)數(shù)根,且三個(gè)根從小到大依次成等比數(shù)列,則實(shí)數(shù)的值可能是 ( ) A. B. C. D. 【答案】A. 13.【朝陽(yáng)區(qū)2014-2015學(xué)年度高三年級(jí)第一學(xué)期期中】如圖,某地一天中6時(shí)至14時(shí)的溫度變化曲線近似滿足函數(shù)(其中 ,), 第7題圖 則估計(jì)中午12時(shí)的溫度近似為( ) 30 20 10 O t/h T/℃ 6 8 10 12 14 A. 30 ℃ B. 27 ℃ C.25 ℃ D.24 ℃ 【答案】B 【解析】由圖象可得,又周期,可得,可得,在將點(diǎn)(6,10)代入,可得,即,又,求得,∴.令x=12,可得,故選:B. 14.【惠安一中、養(yǎng)正中學(xué)、安溪一中2015屆高三聯(lián)合考試】對(duì)于函數(shù),有下列4個(gè)命題:①任取,,都有恒成立;②,對(duì)于一切恒成立;③對(duì)任意,不等式恒成立,則實(shí)數(shù)的取值范圍是.④函數(shù)有個(gè)零點(diǎn);則其中所有真命題的序號(hào)是 . 【答案】①④. 15.【河南省信陽(yáng)市2015屆高中畢業(yè)班第二次調(diào)研】已知向量,記函數(shù).求: (Ⅰ)函數(shù)的最小值及取得最小值時(shí)的集合; (Ⅱ)函數(shù)的單調(diào)遞增區(qū)間. 拓展試題以及解析 1. 將函數(shù)的圖象向左平移個(gè)單位,再向上平移3個(gè)單位,得到函數(shù)的圖象,則的解析式為( ) A. B. C. D. 【答案】B 【入選理由】本題主要考查三角函數(shù)圖像變換及三角函數(shù)的圖象和性質(zhì)等基礎(chǔ)知識(shí),意在考查運(yùn)用數(shù)形結(jié)合思想的能力和運(yùn)算能力, 本題重點(diǎn)考查三角函數(shù)的圖象及其平移變換理論,突出了對(duì)函數(shù)圖象變換思想的理解,難度適中,故押此題. 2.已知,,點(diǎn)在直線上,則函數(shù)的最小正周期為_________. 【答案】. 【解析】,,依題意,則,所以,則函數(shù)的周期為. 【入選理由】本題主要考查平面向量的線性運(yùn)算,三角函數(shù)的周期性等基礎(chǔ)知識(shí),意在考查學(xué)生的運(yùn)算求解能力,運(yùn)用數(shù)形結(jié)合思想的能力, 三角函數(shù)的性質(zhì)與向量巧妙結(jié)合, 立意比較新,難度適中,故押此題. 3. 已知函數(shù)=的部分圖象如圖所示,則的單調(diào)增區(qū)間為 ( ) A., B., C. , D., 【答案】A 【解析】由五點(diǎn)作圖法知,,解得,,,所以,令,,解得,,所以的單調(diào)增區(qū)間為,,故選A. 【入選理由】本題主要考查由三角函數(shù)的圖象求解析式,三角函數(shù)的圖象與性質(zhì),意在考查運(yùn)用數(shù)形結(jié)合思想的能力和運(yùn)算能力, 本題是一個(gè)常規(guī)題型,但出題方式有新意,難度適中,故押此題. 4.已知函數(shù) ,滿足其最小正周期為,,,則 函數(shù)在區(qū)間上的最大值與最小值之和為( ) A. B. C. D. 【答案】B 【入選理由】本題主要考查求三角函數(shù)解析式,三角函數(shù)的圖象與性質(zhì),求三角函數(shù)的導(dǎo)數(shù)等基礎(chǔ)知識(shí),意在考查運(yùn)用數(shù)形結(jié)合思想的能力和運(yùn)算能力, 本題綜合性強(qiáng),但出題方式有創(chuàng)意,難度適中,故押此題. 5. 已知是偶函數(shù),則實(shí)數(shù)的值為 【答案】 【解析】因?yàn)楹瘮?shù)是偶函數(shù),且定義域?yàn)?,所以即?dāng)時(shí),為偶函數(shù). 【入選理由】本題考查三角函數(shù)的奇偶性,特殊角三角函數(shù)值等基礎(chǔ)知識(shí),意在考查學(xué)生分析問題能力及基本運(yùn)算能力,本題這種出法有創(chuàng)意,難度適中,故押此題. 6. 已知函數(shù)的一條對(duì)稱軸方程為,則函數(shù)的最大值為___________. 【答案】1 【入選理由】本題主要考查三角函數(shù)的圖像與性質(zhì)、倍角公式、和角公式、三角恒等變換以及三角函數(shù)最值等基礎(chǔ)知識(shí),考查了基本的運(yùn)算能力和轉(zhuǎn)化與化歸的數(shù)學(xué)思想以及數(shù)形結(jié)合的數(shù)學(xué)方法等.本題考查內(nèi)容重點(diǎn)突出,綜合性較強(qiáng),難度不大,故選此題. 7.已知函數(shù),則下列結(jié)論錯(cuò)誤的是( ) A.函數(shù)的最小正周期為 B.函數(shù)的圖象關(guān)于直線對(duì)稱 C.函數(shù)的圖象可由的圖象向右平移個(gè)單位得到 D. 函數(shù)在區(qū)間上是增函數(shù) 【答案】B 【解析】由題知,函數(shù),所以的最小正周期為,選項(xiàng)A正確;將代入的解析式得,而不是函數(shù)的最值,所以選項(xiàng)B不正確;因?yàn)椋运捎傻膱D象向右平移個(gè)單位得到,選項(xiàng)C正確;當(dāng)時(shí),,此范圍內(nèi)當(dāng)?shù)闹翟黾訒r(shí),的值增加,的值也增加,所以函數(shù)在區(qū)間上是增函數(shù),選項(xiàng)D正確. 【入選理由】本題綜合考查三角函數(shù)的圖像與性質(zhì),三角函數(shù)圖像變換等基礎(chǔ)知識(shí),意在考查學(xué)生分析問題能力及解決問題的能力,本題綜合性強(qiáng),難度適中,故押此題. 8.已知中,邊的對(duì)角分別為,且,,. (Ⅰ)求及的面積; (Ⅱ)已知函數(shù),把函數(shù)的圖象向左平移個(gè)單位得函數(shù) 的圖象,求函數(shù)()上的單調(diào)遞增區(qū)間. 【入選理由】本題主要考查正弦定理解三角形、三角函數(shù)的恒等變換、三角函數(shù)的平移變換以及三角函數(shù)的單調(diào)性等,考查基本的運(yùn)算能力以及函數(shù)與方程、轉(zhuǎn)化與化歸的數(shù)學(xué)思想,綜合分析問題解決問題的能力.本題綜合性較強(qiáng),難度不大,故選此題.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)精講+精練+精析專題4_1 三角函數(shù)的圖象與性質(zhì)試題 理含解析 高考 數(shù)學(xué) 精練 精析 專題 _1 三角函數(shù) 圖象 性質(zhì) 試題 解析
鏈接地址:http://m.appdesigncorp.com/p-11852409.html