高考數(shù)學(xué)大二輪復(fù)習(xí) 第二編 專題整合突破 專題八 系列4選講 第一講 坐標(biāo)系與參數(shù)方程適考素能特訓(xùn) 文
《高考數(shù)學(xué)大二輪復(fù)習(xí) 第二編 專題整合突破 專題八 系列4選講 第一講 坐標(biāo)系與參數(shù)方程適考素能特訓(xùn) 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)大二輪復(fù)習(xí) 第二編 專題整合突破 專題八 系列4選講 第一講 坐標(biāo)系與參數(shù)方程適考素能特訓(xùn) 文(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專題八 系列4選講 第一講 坐標(biāo)系與參數(shù)方程適考素能特訓(xùn) 文12016合肥質(zhì)檢在直角坐標(biāo)系xOy中,曲線C:(為參數(shù)),在以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l:sincosm.(1)若m0時(shí),判斷直線l與曲線C的位置關(guān)系;(2)若曲線C上存在點(diǎn)P到直線l的距離為,求實(shí)數(shù)m的取值范圍解(1)曲線C的普通方程為:(x1)2(y1)22,是一個(gè)圓;當(dāng)m0時(shí),直線l的直角坐標(biāo)方程為:xy0,圓心C到直線l的距離為dr,r為圓C的半徑,所以直線l與圓C相切(2)由已知可得,圓心C到直線l的距離為d,解得1m5.22016湖南四校聯(lián)考已知直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為4sin.(1)求圓C的直角坐標(biāo)方程;(2)若P(x,y)是直線l與圓面4sin的公共點(diǎn),求xy的取值范圍解(1)因?yàn)閳AC的極坐標(biāo)方程為4sin,所以24sin4又2x2y2,xcos,ysin,所以x2y22y2x,所以圓C的普通方程為x2y22x2y0.(2)設(shè)zxy,由圓C的方程x2y22x2y0(x1)2(y)24,所以圓C的圓心是(1,),半徑是2,將代入zxy得zt.又直線l過(guò)C(1,),圓C的半徑是2,所以2t2,所以2t2,即xy的取值范圍是2,232016山西質(zhì)檢已知曲線C1:xy和C2:(為參數(shù))以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的長(zhǎng)度單位(1)把曲線C1和C2的方程化為極坐標(biāo)方程;(2)設(shè)C1與x,y軸交于M,N兩點(diǎn),且線段MN的中點(diǎn)為P.若射線OP與C1,C2交于P,Q兩點(diǎn),求P,Q兩點(diǎn)間的距離解(1)C1:sin,C2:2.(2)M(,0),N(0,1),P,OP的極坐標(biāo)方程為,把代入sin得11,P.把代入2得22,Q.|PQ|21|1,即P,Q兩點(diǎn)間的距離為1.42016長(zhǎng)春質(zhì)量監(jiān)測(cè)在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(t是參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為8cos.(1)求曲線C2的直角坐標(biāo)方程,并指出其表示何種曲線;(2)若曲線C1和曲線C2交于A,B兩點(diǎn),求|AB|的最大值和最小值解(1)對(duì)于曲線C2有8cos,即24cos4sin,因此曲線C2的直角坐標(biāo)方程為x2y24x4y0,其表示一個(gè)圓(2)聯(lián)立曲線C1與曲線C2的方程可得:t22sint130,|AB|t1t2|,因此|AB|的最小值為2,最大值為8.52016河南六市一聯(lián)在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;(2)若直線l與曲線C相交于A,B兩點(diǎn),求AOB的面積解(1)由曲線C的極坐標(biāo)方程,得2sin22cos,所以曲線C的直角坐標(biāo)方程是y22x.由直線l的參數(shù)方程得t3y,代入x1t中,消去t得xy40,所以直線l的普通方程為xy40.(2)將直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程y22x,得t28t70,設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,則t1t28,t1t27,所以|AB|t1t2|6,因?yàn)樵c(diǎn)到直線xy40的距離d2,所以AOB的面積是|AB|d6212.62016貴陽(yáng)監(jiān)測(cè)極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,曲線C1的極坐標(biāo)方程為4cos(0),曲線C2的參數(shù)方程為(t為參數(shù),00)在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:4cos.(1)說(shuō)明C1是哪一種曲線,并將C1的方程化為極坐標(biāo)方程;(2)直線C3的極坐標(biāo)方程為0,其中0滿足tan02,若曲線C1與C2的公共點(diǎn)都在C3上,求a.解(1)消去參數(shù)t得到C1的普通方程x2(y1)2a2.C1是以(0,1)為圓心,a為半徑的圓將xcos,ysin代入C1的普通方程中,得到C1的極坐標(biāo)方程為22sin1a20.(2)曲線C1,C2的公共點(diǎn)的極坐標(biāo)滿足方程組若0,由方程組得16cos28sincos1a20,由已知tan2,可得16cos28sincos0,從而1a20,解得a1(舍去)或a1.a1時(shí),極點(diǎn)也為C1,C2的公共點(diǎn),在C3上所以a1.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)大二輪復(fù)習(xí) 第二編 專題整合突破 專題八 系列4選講 第一講 坐標(biāo)系與參數(shù)方程適考素能特訓(xùn) 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 第二 專題 整合 突破 系列 第一 坐標(biāo)系 參數(shù) 方程 適考素能特訓(xùn)
鏈接地址:http://m.appdesigncorp.com/p-11836695.html