XK714數(shù)控銑床總體設計及主傳動系統(tǒng)的設計 立柱設計 床身設計【三維SW建模】【含CAD圖紙+PDF圖】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ========================
XK718立式數(shù)控床身銑床
工作臺面(寬×長) 900×1800mm
主軸最高轉速 6000轉
XK718立式數(shù)控床身銑床
XK718立式數(shù)控床身銑床,是我廠消化吸收國外最新技術而生產(chǎn)的高性能、高精度、高可靠性的機床。具備在重負荷切削及斷續(xù)切削條件下保持良好的精度和剛性,具備高可靠性和穩(wěn)定性的,是航天、航空、兵器、汽車等行業(yè)用于加工復雜零件和模具的理想裝備。
一、 機床主要技術參數(shù):
項 目
單 位
規(guī) 格
工作臺
工作臺尺寸(寬×長)
mm
900×1800
T型槽數(shù)量×槽寬×間距
mm
5×22×165
工作臺最大承重
kg
1600
行程
工作臺行程(X軸)
mm
1600
滑鞍行程 (Y軸)
mm
900
主軸箱行程(Z軸)
mm
680
主
軸
主軸錐孔
BT 50
主軸轉速
r/min
20~6000
主軸電機功率
kw
18.5/22
主軸最大扭矩
N.m
140
主軸端面至工作臺距離
mm
160~840
主軸中心至立柱距離
mm
950
進給
切削進給速度
mm /min
1~4000
快速移動速度
mm /min
10000
X/Y/Z進給電機額定扭矩
N.m
30/40/30
冷卻
刀具冷卻泵流量
L/min
66
刀具冷卻泵壓力揚程
米
15
精
度
定位精度
mm
±0.010
重復定位精度
mm
±0.008
其他
機床高度尺寸
mm
3173
機床地基面積
mm
6150×3930
機床總重量
kg
18000kg
機床總功率
Kw
50
二、 機床結構及性能說明:
1. 主軸部件
1) 整體精密主軸部件選用臺灣旭泰主軸制造公司的產(chǎn)品,主軸具有卸荷結構,保護主軸軸承免受外力沖擊,保證了主軸的高精度,延長了主軸的使用壽命,具有高的剛性和抗震性;
2) 主軸軸承采用德國FAG公司的高精度精密主軸軸承,回轉精度高,精度的保持性長久;
3) 主軸采用18.5/22KW主軸電機驅動,主軸恒功率范圍寬,扭矩大,轉速高,最高轉速可達6000RPM;
4) 配置主軸恒溫油冷卻箱,保證了主軸的熱穩(wěn)定性及高精度。
2. 立柱、床身及工作臺部件
1) 機床的床身、立柱、主軸箱等重要結構件均采用高強度鑄鐵,鑄件經(jīng)二次回火,抗震性能好,以滿足工件的強力切削及精度要求;
2) 立柱、床身采用加厚筋板布局,床身采用寬距四導軌布局,減小了受力變形,滿足重載運動及切削;
3) 三向導軌均采用矩形滑動寬導軌副結構,導軌面經(jīng)高頻淬硬和磨削,配合采用聚四氟乙烯貼塑的導軌,提高了主軸箱與立柱及工作臺的連接剛性,確保了加工的動態(tài)精度;
3. 傳動系統(tǒng)
1) X、Y、Z直線坐標軸由AC伺服電機驅動,并通過德國KTR聯(lián)軸器直接與滾珠絲杠連接,從而消除了傳動鏈的間隙,提高了位置精度;
2) X、Y、Z直線坐標軸均采用經(jīng)預加載荷的高精度雙螺母滾珠絲杠,該絲杠兩端的支撐為高精度成組軸承,形成雙推結構配置,且對滾珠絲杠進行預應力拉伸安裝,從而提高了進給傳動系統(tǒng)的剛度并避免快速移動帶來的熱變形,定位精度高;
4. 主軸箱垂向平衡系統(tǒng)
采用重錘平衡及園柱導向方式,確保了Z向運動的平穩(wěn)性;
5. 氣壓系統(tǒng)
液源三大件、氣閥、氣缸采用合資的上海新益氣動元件公司的產(chǎn)品,提高了可靠性;
6. 潤滑系統(tǒng)
1) 配置廣東日華(合資)中央自動潤滑系統(tǒng),對所有滑動導軌面、滾動導軌面和滾動絲桿部件,通過定量分配潤滑系統(tǒng)進行自動供油潤滑
2) 各進給系統(tǒng)的滾動軸承和其他部件中的滾動軸承用3#特種潤滑脂進行潤滑。
7. 冷卻及切屑沖刷系統(tǒng)
配置臺灣高壓多級冷卻泵,配備大流量冷卻切削液站,即能充分冷卻加工中的刀具和工件,又能對切屑起沖刷作用。
8. 排屑系統(tǒng)
機床配置自動鏈式排屑器及集屑小車,分離切屑及切削液。
9. 電柜空調
為了保證該機床具有高的可靠性,選用了高品質的電氣元件,采用防護等級達IP54以上的電柜,并裝電柜空調,對電柜降溫、除濕。
10. 防濺全防護罩
本機床具有防濺全防護罩,具有開門暫停加工運行保護功能,并在操作面板上安裝功能起用選擇開關。
11. 人機通訊:
機床配有便攜式電子手輪,RS232通訊接口,5米長電纜,實現(xiàn)機床與計算機之間的數(shù)據(jù)傳輸,用儲存卡通過PCMCIA接口進行DNC運行。
12. 機床工作環(huán)境
1) 環(huán)境溫度:0~40℃
2) 電 源:380V±10%,三相50HZ±1%, 總容量50KVA
3) 相對濕度:≤90%
4) 主軸松刀氣缸壓縮空氣:6bar, 排量0.5m3/min
三、 機床所配數(shù)控系統(tǒng)的說明:
CNC數(shù)控系統(tǒng)配置FANUC系統(tǒng),主要功能如下:
1. 10.4″LCD顯示器,原裝操作面板,界面具有中文顯示功能;
2. 三軸聯(lián)動;
3. 刀具軌跡圖形顯示功能;
4. 具備刀具半徑和長度補償、刀具參數(shù)數(shù)據(jù)管理功能;
5. 坐標值公英制編程及絕對/相對增量編程功能;
6. 后臺編程功能;
7. 故障自診斷、錯誤報警顯示功能;
8. 絲杠螺距誤差補償功能;
9. 反向間隙補償功能;
10. 具備銑、鉆、鉸、攻、鏜等固定循環(huán)G代碼功能;
11. 機床所配置的其他標準功能的表述見FANUC系統(tǒng)樣本。
四、 機床主要配套件的說明:
序號
名 稱
配套廠商
1
數(shù)控系統(tǒng)FANUC 0i-MC
北京FANUC公司
2
主軸交流伺服驅動系統(tǒng)
北京FANUC公司
3
進給交流伺服驅動系統(tǒng)
北京FANUC公司
4
精密主軸部件
臺灣旭泰主軸公司
5
主軸軸承
德國FAG公司
6
滾珠絲杠
臺灣銀泰公司
7
主軸松刀機構
臺灣豪澄公司
8
滾珠絲杠軸承
日本NSK公司
9
主軸恒溫油冷凍箱
上海永翼機械有限公司
10
自動潤滑系統(tǒng)
廣東日華(合資)
11
數(shù)控聯(lián)軸器
臺灣靖泰有限公司
12
電纜輸送鏈
上海江川機件廠
13
同步齒形帶
日本UNITTA公司
14
主要電氣元件
法國施耐德公司
15
氣源三大件、氣閥氣缸
新益氣動元件(合資)公司
16
壓力開關
德國REXROTH
17
導軌不銹鋼防護罩
上海萬銀機械制造有限公司
18
全罩
上海振飛機床附件公司
19
電柜空調
上海永翼機械有限公司
五、 驗收標準
1) JB/T 8329.1-1999《數(shù)控床身銑床 精度檢驗條件》
2) 機床合格證明書
六、 機床隨機標準附件
1. 地腳螺釘
2. 機床墊圈
3. 沖屑氣槍一把
4. 鏈式自動排屑器
七、 機床可選配置(價格另計)
1
配德國ZF變速箱,實現(xiàn)主軸560M.N的大扭矩加工
4.4萬元
2
四軸聯(lián)動,煙臺TK13400E立臥數(shù)控轉臺
8.0萬元
第 5 頁 共 5 頁 XK718
EXTENDING BEARING LIFE
Abstract:Nature works hard to destroy bearings, but their chances of survival can be improved by following a few simple guidelines. Extreme neglect in a bearing leads to overheating and possibly seizure or, at worst, an explosion. But even a failed bearing leaves clues as to what went wrong. After a little detective work, action can be taken to avoid a repeat performance.
Keywords: bearings failures life
Bearings fail for a number of reasons,but the most common are misapplication,contamination,improper lubricant,shipping or handling damage,and misalignment. The problem is often not difficult to diagnose because a failed bearing usually leaves telltale signs about what went wrong.
However,while a postmortem yields good information,it is better to avoid the process altogether by specifying the bearing correctly in The first place.To do this,it is useful to review the manufacturers sizing guidelines and operating characteristics for the selected bearing.
Equally critical is a study of requirements for noise, torque, and runout, as well as possible exposure to contaminants, hostile liquids, and temperature extremes. This can provide further clues as to whether a bearing is right for a job.
1 Why bearings fail
About 40% of ball bearing failures are caused by contamination from dust, dirt, shavings, and corrosion. Contamination also causes torque and noise problems, and is often the result of improper handling or the application environment.Fortunately, a bearing failure caused by environment or handling contamination is preventable,and a simple visual examination can easily identify the cause.
Conducting a postmortem il1ustrates what to look for on a failed or failing bearing.Then,understanding the mechanism behind the failure, such as brinelling or fatigue, helps eliminate the source of the problem.
Brinelling is one type of bearing failure easily avoided by proper handing and assembly. It is characterized by indentations in the bearing raceway caused by shock loading-such as when a bearing is dropped-or incorrect assembly. Brinelling usually occurs when loads exceed the material yield point(350,000 psi in SAE 52100 chrome steel).It may also be caused by improper assembly, Which places a load across the races.Raceway dents also produce noise,vibration,and increased torque.
A similar defect is a pattern of elliptical dents caused by balls vibrating between raceways while the bearing is not turning.This problem is called false brinelling. It occurs on equipment in transit or that vibrates when not in operation. In addition, debris created by false brinelling acts like an abrasive, further contaminating the bearing. Unlike brinelling, false binelling is often indicated by a reddish color from fretting corrosion in the lubricant.
False brinelling is prevented by eliminating vibration sources and keeping the bearing well lubricated. Isolation pads on the equipment or a separate foundation may be required to reduce environmental vibration. Also a light preload on the bearing helps keep the balls and raceway in tight contact. Preloading also helps prevent false brinelling during transit.
Seizures can be caused by a lack of internal clearance, improper lubrication, or excessive loading. Before seizing, excessive, friction and heat softens the bearing steel. Overheated bearings often change color,usually to blue-black or straw colored.Friction also causes stress in the retainer,which can break and hasten bearing failure.
Premature material fatigue is caused by a high load or excessive preload.When these conditions are unavoidable,bearing life should be carefully calculated so that a maintenance scheme can be worked out.
Another solution for fighting premature fatigue is changing material.When standard bearing materials,such as 440C or SAE 52100,do not guarantee sufficient life,specialty materials can be recommended. In addition,when the problem is traced back to excessive loading,a higher capacity bearing or different configuration may be used.
Creep is less common than premature fatigue.In bearings.it is caused by excessive clearance between bore and shaft that allows the bore to rotate on the shaft.Creep can be expensive because it causes damage to other components in addition to the bearing.
0ther more likely creep indicators are scratches,scuff marks,or discoloration to shaft and bore.To prevent creep damage,the bearing housing and shaft fittings should be visually checked.
Misalignment is related to creep in that it is mounting related.If races are misaligned or cocked.The balls track in a noncircumferencial path.The problem is incorrect mounting or tolerancing,or insufficient squareness of the bearing mounting site.Misalignment of more than 1/4·can cause an early failure.
Contaminated lubricant is often more difficult to detect than misalignment or creep.Contamination shows as premature wear.Solid contaminants become an abrasive in the lubricant.In addition。insufficient lubrication between ball and retainer wears and weakens the retainer.In this situation,lubrication is critical if the retainer is a fully machined type.Ribbon or crown retainers,in contrast,allow lubricants to more easily reach all surfaces.
Rust is a form of moisture contamination and often indicates the wrong material for the application.If the material checks out for the job,the easiest way to prevent rust is to keep bearings in their packaging,until just before installation.
2 Avoiding failures
The best way to handle bearing failures is to avoid them.This can be done in the selection process by recognizing critical performance characteristics.These include noise,starting and running torque,stiffness,nonrepetitive runout,and radial and axial play.In some applications, these items are so critical that specifying an ABEC level alone is not sufficient.
Torque requirements are determined by the lubricant,retainer,raceway quality(roundness cross curvature and surface finish),and whether seals or shields are used.Lubricant viscosity must be selected carefully because inappropriate lubricant,especially in miniature bearings,causes excessive torque.Also,different lubricants have varying noise characteristics that should be matched to the application. For example,greases produce more noise than oil.
Nonrepetitive runout(NRR)occurs during rotation as a random eccentricity between the inner and outer races,much like a cam action.NRR can be caused by retainer tolerance or eccentricities of the raceways and balls.Unlike repetitive runout, no compensation can be made for NRR.
NRR is reflected in the cost of the bearing.It is common in the industry to provide different bearing types and grades for specific applications.For example,a bearing with an NRR of less than 0.3um is used when minimal runout is needed,such as in disk—drive spindle motors.Similarly,machine—tool spindles tolerate only minimal deflections to maintain precision cuts.
Consequently, bearings are manufactured with low NRR just for machine-tool applications. Contamination is unavoidable in many industrial products,and shields and seals are commonly used to protect bearings from dust and dirt.However,a perfect bearing seal is not possible because of the movement between inner and outer races.Consequently,lubrication migration and contamination are always problems.
Once a bearing is contaminated, its lubricant deteriorates and operation becomes noisier.If it overheats,the bearing can seize.At the very least,contamination causes wear as it works between balls and the raceway,becoming imbedded in the races and acting as an abrasive between metal surfaces.Fending off dirt with seals and shields illustrates some methods for controlling contamination.
Noise is as an indicator of bearing quality.Various noise grades have been developed to classify bearing performance capabilities.
Noise analysis is done with an Anderonmeter, which is used for quality control in bearing production and also when failed bearings are returned for analysis. A transducer is attached to the outer ring and the inner race is turned at 1,800rpm on an air spindle. Noise is measured in andirons, which represent ball displacement in μm/rad.
With experience, inspectors can identify the smallest flaw from their sound. Dust, for example, makes an irregular crackling. Ball scratches make a consistent popping and are the most difficult to identify. Inner-race damage is normally a constant high-pitched noise, while a damaged outer race makes an intermittent sound as it rotates.
Bearing defects are further identified by their frequencies. Generally, defects are separated into low, medium, and high wavelengths. Defects are also referenced to the number of irregularities per revolution.
Low-band noise is the effect of long-wavelength irregularities that occur about 1.6 to 10 times per revolution. These are caused by a variety of inconsistencies, such as pockets in the race. Detectable pockets are manufacturing flaws and result when the race is mounted too tightly in multiplejaw chucks.
Medium-hand noise is characterized by irregularities that occur 10 to 60 times per revolution. It is caused by vibration in the grinding operation that produces balls and raceways. High-hand irregularities occur at 60 to 300 times per revolution and indicate closely spaced chatter marks or widely spaced, rough irregularities.
Classifying bearings by their noise characteristics allows users to specify a noise grade in addition to the ABEC standards used by most manufacturers. ABEC defines physical tolerances such as bore, outer diameter, and runout. As the ABEC class number increase (from 3 to 9), tolerances are tightened. ABEC class, however, does not specify other bearing characteristics such as raceway quality, finish, or noise. Hence, a noise classification helps improve on the industry standard.
XK714數(shù)控銑床總體設計及主傳動系統(tǒng)的設計
專業(yè):機械設計制造及其自動化 學號: 姓名: 指導老師: 職稱:
摘要
本文介紹了立式數(shù)控銑床XK714的一些基本概況,簡述了機床主傳動系統(tǒng)方面的原理和類型,分析了各種傳動方案的機理,立式數(shù)控銑床主傳動系統(tǒng)包括了主軸電動機、主軸傳動系統(tǒng)和主軸組件三部分組成。其次詳細介紹了XK714的設計過程,該立式數(shù)控銑床主軸變速箱是靠齒輪進行傳動的,主軸變速采用雙聯(lián)滑移齒輪。齒輪傳動具有傳動效率高,結構緊湊,工作可靠,壽命長,傳動比準確等優(yōu)點。文中介紹了數(shù)控銑床主傳動系統(tǒng)各種優(yōu)缺點的比較,主傳動方案的選擇和確定、主傳動變速系統(tǒng)的設計計算、主軸組件的設計、軸承的選用及其潤滑、關鍵零件的校核等。
關鍵詞:立式數(shù)控銑床、主傳動系統(tǒng)、主軸組件
一. 緒論
(一)概述
1.數(shù)控銑床概述
數(shù)控銑床是一種功能很強大的數(shù)控機床,目前迅速發(fā)展起來的加工中心柔性加工單元都是在數(shù)控銑床、數(shù)控鏜床的基礎上生產(chǎn)的,兩者都離不開銑削方式,由于數(shù)控銑削方比較復雜,需要解決的技術問題也就很多,因此,人們在研究和開發(fā)數(shù)控系統(tǒng)級自動化編程語言軟件時,一直把銑削加工作為重點,數(shù)控銑床機械部分與普通銑床基本相同,工作臺可以做橫向、縱向和垂直三個方向的運動,因此普通銑床能加工的工藝內容,數(shù)控銑床都能做到。
2.數(shù)控機床的發(fā)展
隨著機械性能不斷的提高,其價格成倍地下降;隨著網(wǎng)絡通訊的普及化、信息處理的智能化、多媒體技術的實用化;數(shù)控技術的普及應用越來越廣泛,越來越深入,數(shù)控技術正在向著開放、集成、智能和標準化的方向發(fā)展。90年代以來,從事科研和應用開發(fā)數(shù)控的技術人員認識到,要讓數(shù)控技術成為第一生產(chǎn)力,關鍵是讓設計人員都用上、會用數(shù)控系統(tǒng)。今天,許多地方、企業(yè)己經(jīng)推廣了數(shù)控技術,取得了較好的效果,但也還存在一些問題值得探討。?
二.數(shù)控銑床的結構設計
(一) 控銑床結構組成
1.數(shù)控銑床組成
數(shù)控銑床的機械結構主要由:主傳動系統(tǒng);進給傳動系統(tǒng);支撐件;輔助裝。本次設計的銑床采用工作臺移動,主軸升降轉動的布局形式。
2.XK714主傳動系統(tǒng)方案的確定
為了適應不同的加工要求,目前主傳動系統(tǒng)分為三種變速方式:(1)、二級以上齒輪變速系統(tǒng);(2)、一級帶傳動方式;(3)、調速電動機直接驅動方式。
由于二級以上齒輪變速系統(tǒng)變速裝置多采用齒輪變速結構。通常使用滑移齒輪實現(xiàn)二級變速的主傳動系統(tǒng)?;讫X輪的移位大都采用液壓驅動。因為數(shù)控銑床使用可調無機變速交流、直流電動機,所以經(jīng)齒輪變速后,實現(xiàn)分段無級變速,調速范圍增加。其優(yōu)點是能夠滿足各種切削運動的轉矩輸出,且具有大范圍調速的能力。故本次設計采用二級以上齒輪變速系統(tǒng)。
三.主傳動變速系統(tǒng)主要參數(shù)計算
(一)計算切削功率
1.切削功率的計算
銑削時切削公式:
2.切削功率的計算
切削功率計算公式:
3.主傳動功率的計算及電動機的初選
用一下公式初選電動機的功率;
其中為銑床傳動總的機械效率,
則主軸電動機選用5.5KW,額定轉速為:1500Rr/min;最高轉速為:6000r/min。
(二)分級變速箱的傳動系統(tǒng)的設計
1.變速范圍
計算轉速的確定:=380;
主軸要求恒功率調速范圍:
電動機恒功率的調速范圍:
變速級數(shù):=1.99; 可以取Z=2
(三)傳動系統(tǒng)圖
圖1 傳動系統(tǒng)圖
四.齒輪傳動設計
(一)齒輪的概述
1.齒輪簡單概述齒輪
齒輪傳動式機械傳動種應用最廣泛的一種傳動形式。齒輪的直徑可以從不足1mm到100m,甚至超過100m,傳遞的功率可以不足1W到數(shù)萬KW,圓周速度可以從很小到200m/s以上。常見的齒輪傳動場合包括家用電器的機械定時,機床主軸箱以及用于各種加速器等
(二)齒輪設計
1.齒輪設計方法
(1).材料選擇熱處理方式及進度等級
考慮到該銑床功率較大,且有中等的沖擊載荷,故大小齒輪采用40Cr鋼表面淬火,平均硬度52HRC,選用6級精度。
(2).按齒輪接觸疲勞強度設計:;可取d=70mm
則m=2
(3).采用齒根彎曲疲勞強度進行校核:
2.齒輪基本參數(shù)
齒輪參數(shù)
=35
=77
=35
=41
=73
d
70mm
154mm
158mm
70mm
82mm
146mm
m
2mm
2mm
2mm
2mm
2mm
2mm
b
14mm
15mm
16mm
15mm
15mm
16mm
a
112mm
114mm
114mm
表1 齒輪基本參數(shù)表
五.主軸組件的設計
(一)主軸的結構設計
1.概述
主軸部件設計是機床設計重要的部件之一,它是機床的執(zhí)行件。它的功用是支持并帶動工件或刀具旋轉進行切削,承受切削力和驅動力等載荷,完成表面成型運動。
2.結構設計
主軸的結構如圖
(二)主軸的校核
1.主軸剛度校核
階梯軸的剛度條件:; =0.168°/m;
查手冊
六.軸承的選用
(一)概述
滾動軸承是現(xiàn)代化機器中廣泛應用的部件之一,它是依靠主要元件間的滾動接觸來支撐主動零件的。與滑動軸承相比,滾動軸承具有摩擦阻力小,啟動靈活,效率高,潤滑方便和互換性好等優(yōu)點,其缺點是抗干擾能力差,工作時有噪聲,工作壽命不及液體摩擦的滑動軸承。
1.壽命計算
壽命計算公式:
滿足機床的設計要求
2.軸承的潤滑
本設計采用脂潤滑,其優(yōu)點是潤滑膜強度高,能夠承受較大的載荷,不易流失,容易密封,一次加脂可以維持相當長的一段時間,方便簡潔。
3.軸承的密封
本次采用非接觸式密封中的迷宮密封,其優(yōu)點是在于工作中幾乎不產(chǎn)生摩擦熱沒有磨損,特別適用于高速和高溫場合。前段軸承受力較大,且要求較高故采取迷宮密封方式。
七.結論
本次設計任務是XK714的總傳動系統(tǒng)及主傳動系統(tǒng)的設計,主要是數(shù)控銑床主傳動系統(tǒng)的設計,該立式數(shù)控銑床主軸采用齒輪傳動的,傳動形式采用集中式傳動,主軸變速采用多聯(lián)滑移齒輪變速。齒輪傳動具有傳動效率高,結構緊湊,工作可靠,壽命長,傳動比準確等優(yōu)點。還對立式數(shù)控銑床各種傳動系統(tǒng)做了對比,主傳動方案的選擇與確定,主傳動變速系統(tǒng)的計算,主軸組件設計,軸承的選用密封及潤滑等,關鍵零件的設計校核。
本次畢業(yè)設計中所有零件的設計與繪制均是在三維繪圖軟件solidworks中進行的,然后完成所繪零件的裝配,完成主軸箱的三維繪制。最終與同組成員所繪制的部分進行總體的裝配完成XK714的總體設計。最后按照要求對相應的零部件進行工程圖的生成并修改完成任務的要求。
經(jīng)過三個月的努力,我們的畢業(yè)設計完成了,大學生活也即將結束,畢業(yè)設計是我們對大學四年的機械知識的總結與整理,也是理論與實踐的結合。在這次畢業(yè)設計過程中我們學習到了很多東西,不光是理論知識,還有互相幫助的重要,團隊合作的重要性等,這些收獲會將在今后的道路上幫助我指導我前行的更遠。
參考文獻
[1] 夏田.數(shù)控加工中心設計.北京:化學工業(yè)出版社,2006.
[2] 陳秀寧,施高義.機械設計課程設計(第三版).杭州:浙江大學出版社,2007.
[3] 現(xiàn)代實用機床設計手冊編委會.現(xiàn)代實用機床設計手冊(上冊).北京:機械工業(yè)出版,2006.6
[4] 王為,汪建曉.機械設計.武漢:華中科技大學出版社,2007.
[5] 戴曙.金屬切削機床.北京:機械工業(yè)出版社,1993.5
[6] 孫恒,陳作模,葛文杰.機械原理(第七版).北京:高等教育出版社,2006.
[7] 成大先.機械設計手冊(第五版)第4卷.北京:化學工業(yè)出版社,2008
[8] 文懷興,夏田.數(shù)控機床系統(tǒng)設計.北京:化學工業(yè)出版社,2005.
[9] 中國·南京工藝裝備制造有限公司.中國工藝,2008版:76
[10] 馬賢智.實用機械加工手冊.沈陽:遼寧科學技術出版社,2002.
[11] 李金伴,馬偉民.實用數(shù)控機床技術手冊.北京:化學工業(yè)出版社,2007.
[12] 黃如林.切削加工簡明實用手冊(第二版).北京化學工業(yè)出版社,2009.
[13] 胡占齊.機床數(shù)控技術.北京:機械工業(yè)出版社,2002
[14] 蔡厚德,李剛炎.數(shù)控機床構造.北京:北京理工大學出版社,2007
[15] 徐宏海,謝富春.數(shù)控銑床.北京:化學工業(yè)出版社,2006.12
[16] 徐宏海,謝富春.數(shù)控銑床.北京:化學工業(yè)出版社,2003.10
[17] 鄧三鵬,劉朝華,田南平.數(shù)控機床結構及維護.北京:機械工業(yè)出版社,2003.1
[18] 沈兵.數(shù)控機床數(shù)控系統(tǒng).北京:清華大學出版社,2001
[19] 李鐵堯.金屬切削機床.北京:機械工業(yè)出版社,1990
[20] 林其駿.機床數(shù)控系統(tǒng).北京:中國科學技術出版社,1991
收藏