廣東省高考數(shù)學(xué)二輪專題復(fù)習(xí) 專題5第29課時(shí)解析幾何的綜合問題課件 理 新人教版

上傳人:沈*** 文檔編號(hào):87834908 上傳時(shí)間:2022-05-10 格式:PPT 頁數(shù):24 大?。?.28MB
收藏 版權(quán)申訴 舉報(bào) 下載
廣東省高考數(shù)學(xué)二輪專題復(fù)習(xí) 專題5第29課時(shí)解析幾何的綜合問題課件 理 新人教版_第1頁
第1頁 / 共24頁
廣東省高考數(shù)學(xué)二輪專題復(fù)習(xí) 專題5第29課時(shí)解析幾何的綜合問題課件 理 新人教版_第2頁
第2頁 / 共24頁
廣東省高考數(shù)學(xué)二輪專題復(fù)習(xí) 專題5第29課時(shí)解析幾何的綜合問題課件 理 新人教版_第3頁
第3頁 / 共24頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《廣東省高考數(shù)學(xué)二輪專題復(fù)習(xí) 專題5第29課時(shí)解析幾何的綜合問題課件 理 新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《廣東省高考數(shù)學(xué)二輪專題復(fù)習(xí) 專題5第29課時(shí)解析幾何的綜合問題課件 理 新人教版(24頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、專題五 解析幾何 2221(00).1421231 SABxABCyyaaxlBxSlBASCTCTABSaSTAB已知 、 分別為曲線 :,與 軸的左、右兩個(gè)交點(diǎn),直線 過點(diǎn) 且與 軸垂直,為 上異于 點(diǎn)的一點(diǎn),連接交曲線 于點(diǎn)若曲線 為半圓,點(diǎn) 為圓弧的三等分點(diǎn),試求出點(diǎn) 的坐標(biāo);若,當(dāng)?shù)淖畲竺娣e為 時(shí),求橢圓的離心率的取例值范圍考點(diǎn)考點(diǎn)1 解析幾何與三角的綜合問題解析幾何與三角的綜合問題 1212SABCaBOTSABSSASaTa當(dāng)曲線 為半圓時(shí),則可確定的大小,故可在中求點(diǎn) 的坐標(biāo);由可以建立直線的斜率與 的關(guān)系,聯(lián)立橢圓與直線的方程求出點(diǎn) 的縱坐標(biāo),從而求出 的范圍,最后確定離心率

2、切入點(diǎn):的范圍 160120 .6030 . 22 32 3tan30(21)33123(1)0(1,2(1,233)13)CaTABBOTBOTSABABSABSBABSBOSTSS 當(dāng)曲線 為半圓時(shí),如圖由點(diǎn) 為圓弧的三等分點(diǎn),得或當(dāng)時(shí),又,故在中,有,所以,;當(dāng)時(shí),同理可求得點(diǎn) 的坐標(biāo)為綜解,或上,析 22222220211222.22211.11SABTASykxakSBkaSakakaASyxaayxaaayaxya設(shè) 直 線的 方 程 為,則,所 以, 得將 其 代 入 直 線的 方 程 得聯(lián) 立 方 程 組, 得2222212242211312.121.22(02TABaaSaa

3、aaea于 是,解 得所 以 橢 圓 的 離 心 率故 橢 圓 的 離 心 率 的 取 值 范 圍 是, 1本題主要聯(lián)系圓和三角形的有關(guān)知識(shí)解這類問題的關(guān)鍵在于分析圖形特征,確定解題方法 2第(2)題中,還涉及利用函數(shù)的單調(diào)性求離心率的取值范圍 3解析幾何中的三角形的面積問題,除了應(yīng)用三角形的知識(shí)外,還會(huì)聯(lián)系到解析幾何的有關(guān)知識(shí),比如此題中的解方程組,利用點(diǎn)的坐標(biāo),或弦長,或點(diǎn)到直線的距離等 12222212333(02 3)1(0),0122,04 6()3tan(2010)lxyPCabF caballxcCGlABOA OBOlAOB 已知直線 的斜率是,它經(jīng)過點(diǎn),和橢圓 : 的右焦點(diǎn),

4、又橢圓的中心關(guān)于直線 的對稱點(diǎn)在直線 :上求橢圓 的方程;是否存在過點(diǎn)的直線 交橢圓于 , ,且滿足為原點(diǎn)?若存在,求出 的方程;若不存在變式1,說湛江二模明理由 1112221222232 3.3.33. 2323.21.12,0262.62lyxlyxxlaalxcclxyCcab 直線 的方程是過原點(diǎn)且垂直于直線 的直線方程是由聯(lián)立可得橢圓的中心關(guān)于直線 的對稱點(diǎn)在直線 :上,即又直線 過解析 故橢圓 的橢圓的右焦點(diǎn),所以焦點(diǎn)是,方則程為即, 112233222222121222221222()()23112126012126.31312 6211.312.1A xyB xylxlyk

5、xkxk xkkkxxx xkkkABkxxkkOABdk 設(shè),當(dāng)直線 不垂直 軸時(shí),設(shè)直線 的方程為,代入橢圓的方程得,所以,所以原點(diǎn) 到直線的距離為234 63tan4 6 coscos3sin4 62 6sin334 613. .332 332 32.333332 633AOBAOBOA OBAOBAOBOA OBAOBAOBOA OBAOBSAB dkklxyxSyxx 因?yàn)?,即,即,所以,即代入化簡得?dāng)直線 垂直 軸時(shí),也滿足,故所求的直線共有三條,分別是 222221162701322(2)552 xCyaAaFAFMxyxyCNNlCPQOONOPOQAPQ 如圖,已知橢圓 :的

6、上頂點(diǎn)為 ,右焦點(diǎn)為 ,直線與圓:相切求橢圓 的方程;設(shè),過點(diǎn) 的直線 與橢圓 交于 、 兩點(diǎn),是坐標(biāo)原點(diǎn),若,試判斷的形狀,并例證明你的結(jié)論考點(diǎn)考點(diǎn)2 解析幾何與直線、圓的綜合解析幾何與直線、圓的綜合 “12”PQAPQ將圓化為標(biāo)準(zhǔn)方程,利用圓心到直線的距離等于半徑的長來解決; 用 點(diǎn)差法 求得直線方程,進(jìn)而求得 、 的切入點(diǎn):坐標(biāo),然后判斷的形狀 222222222262703133,13.0,1,0 (1)1033122(1. 11)323MxxyxyxyMMrxAF ccyaAFycxcycc cAFMccccacCC 將圓 的一般方程化為標(biāo)準(zhǔn)方程,圓 的圓心為,半徑由,得直線:,即,

7、由直線與圓相切,得,得或舍去當(dāng)時(shí),故橢圓 的方程為 :解析 2222121122121212121211221212()()1133()()0.32322()()()552 324.55xxP xyQ xyyyxxxxyyyyONOP OQxyxyxxyy 設(shè),、,則,兩式相減,得因?yàn)?,所以,即?2121212222122 3()435()0.3563233()656531.62152 390.33 335xxyyyyxxlklyxyxxyxxxx 代入得,所以即直線的斜率,從而直線的方程為,即將其代入,并整理得解得,112231330( 30)623 333 314()565253 34(

8、)553 39( 31)()5599()055xyPxyQAPAQAP AQAPAQAPQ 當(dāng)時(shí),即 的坐標(biāo)為,當(dāng)時(shí),即 的坐標(biāo)為,所以, ,因?yàn)?,所以,即是直角三角?用向量包裝的解析幾何題最近幾年高考沒有考,所以要特別引起重視曲線中以已知點(diǎn)為中點(diǎn)的交點(diǎn)弦問題用“點(diǎn)差法”是較為有效的,利用求根公式解一元二次方程也是近年來出現(xiàn)比較多的考查內(nèi)容;另外,作為待定系數(shù)法也是求曲線方程常用的方法 1212(022)2(0,22).212(022)(0,22)122 CFFeCCAFFlMNMNl已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率求橢圓的方程;經(jīng)過橢圓的左頂點(diǎn)和焦點(diǎn),、作圓,一條不與坐標(biāo)軸平行的直線 與圓

9、交于不同的點(diǎn)、,且線段的中點(diǎn)的橫坐標(biāo)為,求直線 斜率的變式取值范圍 222224 22 22481.1681yccecaabyyx由題意知:橢圓焦點(diǎn)在 軸上,中心在坐標(biāo)原點(diǎn),且,所以,由已知條件知橢圓的焦點(diǎn)在 軸上,故其方程析為:解 02212001()21( 2 2 0)( 2 2 0)(02 2)(0,2 2)80,02 2011.12022OPlklMNPyAAFFxyOyk kkyk 設(shè)直線 的斜率為 , 與圓交得的弦的中點(diǎn)為,由知,所以過三點(diǎn),、,、的圓的方程是,圓心為,半徑為,所以,得2022223111()0.2231()(1212112 23)31131klyyk xkxykkkkldrdkkkk又因?yàn)?:,即所以圓心到直線 的距離,即,解得,即斜率 的取值,范圍是 1解析幾何與解三角形結(jié)合一起考查是一類常見題,重點(diǎn)聯(lián)系圓錐曲線的定義、方程、正弦定理、余弦定理、面積公式等解題時(shí)應(yīng)根據(jù)圖形特征來判斷其聯(lián)系點(diǎn),找準(zhǔn)對應(yīng)的解題方法即什么條件下需借助方程,什么條件下需借助正弦定理、余弦定理等 2解析幾何中的最值問題常見的解決方案有: (1)函數(shù)思想:即所求表示某變量的函數(shù),依據(jù)函數(shù)式求最值重要方法有單調(diào)性求最值、基本不等式求最值、導(dǎo)數(shù)法求最值等 (2)幾何直觀:直接從圖形中得出取最值時(shí)的條件,從而依據(jù)圖形求解

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!