沖刺2019高考數(shù)學二輪復習 核心考點特色突破 專題09 平面向量的線性表示(含解析).doc
《沖刺2019高考數(shù)學二輪復習 核心考點特色突破 專題09 平面向量的線性表示(含解析).doc》由會員分享,可在線閱讀,更多相關《沖刺2019高考數(shù)學二輪復習 核心考點特色突破 專題09 平面向量的線性表示(含解析).doc(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
專題09 平面向量的線性表示 【自主熱身,歸納總結(jié)】 1、設a,b不共線,=2a+pb,=a+b,=a-2b,若A,B,D三點共線,則實數(shù)p= . 【答案】-1 【解析】因為=2a+pb,=a+b,=a-2b,所以=+=2a-b.因為A,B,D三點共線,所以=λ,即2a+pb=λ(2a-b)=2λa-λb,所以解得所以實數(shù)p的值是-1. 2、設與是兩個不共線向量,,,,若A,B,D三點共線,則 . 【答案】: 【解析】,設.則且,解得. 3、在中,若點,,依次是邊上的四等分點,設,,用,表示,則 . 【解析】 在中,,,所以 . 4.設點,,是直線上不同的三點,點是直線外一點,若,則的值為 . 【答案】:1 【解析】 因為點,,三點共線,所以,又因為 ,所以. 5、如圖,在中,,分別為邊,的中點. 為邊上的點,且,若,,則的值為 . 【答案】: 【解析】:因為為的中點,所以,故,。 6、已知為的外心,若,則= . 【答案】: 誤點警示:若為銳角,則與分別是同弧所對的圓心角與圓周角,此時 =2;若為鈍角,由與的關系是,因此,必須對進行分類討論.本題從條件判斷知,必為鈍角. 7、已知點C,D,E是線段的四等分點,為直線外的任意一點,若,則實數(shù) 的值為 . 【答案】: 【解析】 因為,所以. 8.如圖,平面內(nèi)有三個向量,,,其中與的夾角為,與的夾角為,且,若,則_______,___________. 【答案】:,. 【解析】 設與,同方向的單位向量分別為,, 依題意有,又,, 則,所以,. 9、如圖,一直線與平行四邊形的兩邊分別 交于兩點,且交其對角線于,其中,,,,則的值為 . 【答案】:. 【解析】 因為點F,K,E共線,故可設 又,所以,解得. 【問題探究,變式訓練】 例1、在△ABC中,AB=2,AC=3,角A的平分線與AB邊上的中線交于點O,若=x+y(x,y∈R),則x+y的值為________. 課本探源 本題的難點是=關系的建立,借助于正弦定理,可以證明=.實際上,必修5P54例5已經(jīng)證明了此結(jié)論,若能夠想到這一點,理順本題的解題思路就容易多了:在△ABC中,AD是∠BAC的平分線,用正弦定理證明:=. 【變式1】、如圖,在平行四邊形ABCD中,AC,BD相交于點O,E為線段AO的中點,若=λ+μ(λ,μ∈R),則λ+μ=________. 【答案】 【解析】: 因為O,E分別是AC,AO的中點,所以=+=+=+(-)=+.又=λ+μ=λ+μ(+)=(λ+μ)+μ,故λ+μ=. . 【變式2】、在中,,若,則的值為 . 【答案】: 因為,而,所以,所以,則的值為. 【關聯(lián)1】、如圖,在△ABC中,BO為邊AC上的中線,,設∥,若,則的值為 . 【答案】 【解析】思路一:, ,因為∥,所以λ-1=,λ=. 思路二:不妨設,則有 【關聯(lián)2】、如圖,在同一個平面內(nèi),向量、,的模分別為1,1,,與的夾角為,且,與的夾角為,若, 則的值為____________. 【答案】:. A C B O 【解析】 由可得,,根據(jù)向量分解易得: ,即,解得 所以. 例2、在△ABC中,∠C=45,O是△ABC的外心,若=m+n(m,n∈R),則m+n的取值范圍是________. 【答案】 [-,1) 思路分析 本題中三點在圓O上是一個關鍵條件,可以建立坐標系求出m,n的關系式,再利用三角換元求解,也可以對向量等式兩邊平方后得到m,n的關系式,再利用線性規(guī)劃求解. 因為C=,O是△ABC外心,所以∠AOB=90,=m+n,所以C在優(yōu)弧上. 建立如圖所示的平面直角坐標系,不妨設半徑為1,則A(0,1),B(1,0). 設C(cosθ,sinθ), 代入=m+n,可得n=cosθ,m=sinθ,即m+n=cosθ+sinθ=sin. 又θ+∈,所以m+n∈[-,1). 解后反思 本題易錯在沒有注意點C在優(yōu)弧上,錯誤的認為點C在整個圓上.本題是典型的二元函數(shù)的值域問題,解題方法比較多,可以用基本不等式、線性規(guī)劃、三角換元,但由于點C在圓弧上,最好的方法建立坐標系,利用三角函數(shù)求解,定義域的尋找也較為簡單. 【變式1】、 如圖,直角梯形ABCD中,AB∥CD,∠DAB=90,AD=AB=4,CD=1,動點P在邊BC上,且滿足=m+n(m,n均為正實數(shù)),則+的最小值為________. 【答案】:. 解法1 建立如圖所示的平面直角坐標系,則A(0,0),B(4,0),D(0,4),C(1,4).又kBC=-,故BC:y=-(x-4).又=m+n,=(4,0),=(0,4),所以=(4m,4n),故P(4m,4n),又點P在直線BC上,即3n+4m=4,即4(+)=(3n+4m)(+)=7++≥7+2=7+4,所以(+)min=,當且僅當即m=,n=時取等號. 解法2 因為=m+n,所以=m+n(+)=m+n-=+n.又C,P,B三點共線,故m-+n=1,即m+=1,以下同解法1. 解后反思 向量的基本運算分為線性運算和坐標運算,本題建立坐標系轉(zhuǎn)化為坐標的運算也可以轉(zhuǎn)化為基底運算,其中三點共線可以轉(zhuǎn)化為點在直線上也可以用共線向量基本定理來轉(zhuǎn)化.基底法運算量小于坐標法、坐標法的思維難度低于基底法. 【變式2】、 如圖,經(jīng)過的重心G的直線與OA,OB交于點P,Q,設,,,則的值為 . 【答案】:3 【解析】 連接并延長,交于點,因為是的重心,即是的中線,所以, ① 因為,所以②,同理可得③, 將②③代入①可得, 即, 設, 則有, 根據(jù)平面向量基本定理,有, 故的值為3. 【關聯(lián)1】、如圖,在等腰三角形ABC中,已知AB=AC=1,A=120,E,F(xiàn)分別是邊AB,AC上的點,且=m,=n,其中m,n∈.若EF,BC的中點分別為M,N,且m+4n=1,則的最小值為________. 【答案】 思路分析:本題易求=-,所以可以利用點M,N是EF,BC的中點將轉(zhuǎn)化用和表示,再求||的最小值;另外也可以通過建立平面直角坐標系將點M,N的坐標表示出來再求解. 【解析】1 由于M,N是EF,BC的中點,=m,=n,m+4n=1,所以=+,=+=+=+,所以=-=2n+.而=11cos120=-,所以||==,顯然當n=時,||min=. 【解析】2 如圖,以點N為坐標原點,直線BC為x軸,直線NA為y軸建立平面直角坐標系,由AB=AC=1,A=120得N(0,0),A0,,B-,0,C,0,所以=n=n,-n,=m==2n-,2n-(由于m+4n=1),從而點E,點Fn,-n+,線段EF的中點Mn-,n+,所以||==,顯然當n=時,||min=. 【關聯(lián)2】、 已知△ABC是邊長為3的等邊三角形,點P是以A為圓心的單位圓上一動點,點Q滿足=+,則||的最小值是________. 【答案】: - 思路分析 求||的最小值,就是求線段BQ長的最小值,因為點B為定點,而點Q是隨著點P的運動而運動的,那么就要關注點Q是如何運動的,即要先求出點Q的軌跡方程,通過建系運用相關點法即可求得點Q的軌跡方程,通過點Q的軌跡方程發(fā)現(xiàn)其軌跡是一個圓,接下來問題就轉(zhuǎn)化為定點與圓上的動點的距離的最小值問題,那就簡單了.一般與動點有關的最值問題,往往運用軌跡思想,首先探求動點的軌跡,在了解其軌跡的基礎上一般可將問題轉(zhuǎn)化為點與圓的關系或直線與圓的關系或兩圓之間的關系. 解法1 以A為原點,AB為x軸建立平面直角坐標系,則=(3,0),=,設Q(x,y),P(x′,y′),由=+,得=, 即所以兩式平方相加得2+2=(x′2+y′2),因為點P(x′,y′)在以A為圓心的單位圓上,所以x′2+y′2=1,從而有2+2=,所以點Q是以M為圓心,R=的圓上的動點,因此BQmin=BM-R=-=-. 解法2 =-=+-=. 令=-,則=(-),那么||=|-|,求||的最小值,就轉(zhuǎn)化為求|-|的最小值,根據(jù)不等式的知識有: |-|≥=,而||2=2=2=2-+2=32-33+32=,即||=,所以|-|≥=-1,從而||=|-|≥-,當且僅當與同向時,取等號. 【關聯(lián)3】、在中,為邊上一點,且,為上一點,且滿足 ,求的最小值. 【解析】 因為,所以, 又因為為上一點,不妨設, 所以, ,因為不共線, 所以,則. 所以, A B C E P 當且僅當,即時等號成立.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 沖刺2019高考數(shù)學二輪復習 核心考點特色突破 專題09 平面向量的線性表示含解析 沖刺 2019 高考 數(shù)學 二輪 復習 核心 考點 特色 突破 專題 09 平面 向量 線性 表示 解析
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-6302641.html