(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題二 基本初等函數(shù)、函數(shù)與方程講義 理(重點(diǎn)生含解析).doc
專題二 基本初等函數(shù)、函數(shù)與方程卷卷卷2018分段函數(shù)的零點(diǎn)問題T9_利用對數(shù)的性質(zhì)比較大小T122017指數(shù)與對數(shù)的互化、對數(shù)運(yùn)算、比較大小T11_函數(shù)的零點(diǎn)問題T112016利用冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)單調(diào)性比較大小T8_利用指數(shù)函數(shù)與冪函數(shù)的單調(diào)性比較大小T6縱向把握趨勢卷3年3考,涉及冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性以及分段函數(shù)的零點(diǎn)問題,題型為選擇題,難度適中,預(yù)計(jì)2019年會(huì)以對數(shù)的運(yùn)算、對數(shù)函數(shù)的圖象與性質(zhì)為考查重點(diǎn)卷3年0考,預(yù)計(jì)2019年會(huì)以選擇題的形式考查冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的有關(guān)性質(zhì)或大小比較問題卷3年3考,涉及由函數(shù)零點(diǎn)個(gè)數(shù)確定參數(shù)問題以及指數(shù)、對數(shù)、冪函數(shù)的性質(zhì)、比較大小問題題型為選擇題,難度偏大,預(yù)計(jì)2019年仍會(huì)考查指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)性質(zhì)的應(yīng)用橫向把握重點(diǎn)1.基本初等函數(shù)作為高考的命題熱點(diǎn),多考查指數(shù)式與對數(shù)式的運(yùn)算,利用函數(shù)的性質(zhì)比較大小,一般出現(xiàn)在第512題的位置,有時(shí)難度較大2.函數(shù)的應(yīng)用問題多體現(xiàn)在函數(shù)零點(diǎn)與方程根的綜合問題上,題目可能較難,應(yīng)引起重視.基本初等函數(shù)的圖象與性質(zhì)由題知法(1)(2019屆高三遼寧五校聯(lián)考)設(shè)a2 017,blog2 017,clog2 018,則()Ac>b>aBb>c>aCa>c>b Da>b>c(2)已知f (x)ax2,g(x)loga|x|(a>0且a1),若f (4)g(4)<0,則yf (x),yg(x)在同一坐標(biāo)系內(nèi)的大致圖象是()(3)(2018信陽二模)設(shè)x,y,z為正實(shí)數(shù),且log2xlog3ylog5z>0,則,的大小關(guān)系不可能是()A.<< B.C.<< D.<<解析(1)a2 017>2 01701,0<blog2 017<log2 0172 0171,clog2 018<log2 01810,a>b>c.故選D.(2)f (x)ax2>0恒成立,又f (4)g(4)<0,g(4)loga|4|loga4<0loga1,0<a<1.故函數(shù)yf (x)在R上單調(diào)遞減,且過點(diǎn)(2,1),函數(shù)yg(x)在(0,)上單調(diào)遞減,在(,0)上單調(diào)遞增,故B正確(3)設(shè)log2xlog3ylog5zk>0,則x2k>1,y3k>1,z5k>1.2k1,3k1,5k1.若0<k<1,則函數(shù)f (x)xk1在定義域上單調(diào)遞減,>>;若k1,則函數(shù)f (x)xk11,;若k>1,則函數(shù)f (x)xk1在定義域上單調(diào)遞增,<<.,的大小關(guān)系不可能是D.因此A、B、C正確,D錯(cuò)誤故選D.答案(1)D(2)B(3)D類題通法1冪、指數(shù)、對數(shù)式比較大小的方法(1)利用冪、指數(shù)、對數(shù)函數(shù)的單調(diào)性,這就需要觀察要比較大小的數(shù)和式的結(jié)構(gòu)特征,尋找共同點(diǎn)(如指數(shù)相同,底數(shù)相同等),構(gòu)造相應(yīng)函數(shù);(2)媒介法,即利用中間值(特別是0和1)作媒介傳遞,達(dá)到比較其大小的目的2基本初等函數(shù)的圖象與性質(zhì)的應(yīng)用技巧(1)對數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性都取決于其底數(shù)的取值,當(dāng)?shù)讛?shù)a的值不確定時(shí),要注意分a>1和0<a<1兩種情況討論:當(dāng)a>1時(shí),兩函數(shù)在定義域內(nèi)都為增函數(shù);當(dāng)0<a<1時(shí),兩函數(shù)在定義域內(nèi)都為減函數(shù)(2)由指數(shù)函數(shù)、對數(shù)函數(shù)與其他函數(shù)復(fù)合而成的函數(shù),其性質(zhì)的研究往往通過換元法轉(zhuǎn)化為兩個(gè)基本初等函數(shù)的有關(guān)性質(zhì),然后根據(jù)復(fù)合函數(shù)的性質(zhì)與相關(guān)函數(shù)的性質(zhì)之間的關(guān)系進(jìn)行判斷(3)對于冪函數(shù)yx的性質(zhì)要注意>0和<0兩種情況的不同 應(yīng)用通關(guān)1(2018廈門一模)已知a0.3,blog0.3,cab,則a,b,c的大小關(guān)系是()Aa<b<c Bc<a<bCa<c<b Db<c<a解析:選Bblog0.3>log1,a0.3<01,cab<a.c<a<b.故選B.2已知冪函數(shù)f (x)(m1)2 xm24m2在(0,)上單調(diào)遞增,函數(shù)g(x)2xt,x11,6)時(shí),總存在x21,6)使得f (x1)g(x2),則t的取值范圍是()A B(,128,)C(,1)(28,) D1,28解析:選D由f (x)是冪函數(shù)得m0或2,當(dāng)m0時(shí),f (x)x2;當(dāng)m2時(shí),f (x)x2.而f (x)(m1)2xm24m2在(0,)上單調(diào)遞增,則f (x)x2,當(dāng)x1,6)時(shí),f (x)1,36)當(dāng)x1,6)時(shí),g(x)2t,64t)若x11,6)時(shí),總存在x21,6)使得f (x1)g(x2),則1,36)2t,64t),故解得1t28,故選D.3若函數(shù)f (x)xa滿足f (2)4,那么函數(shù)g(x)|loga(x1)|的圖象大致為()解析:選C法一:由函數(shù)f (x)xa滿足f (2)4,得2a4,a2,則g(x)|loga(x1)|log2(x1)|,將函數(shù)ylog2x的圖象向左平移1個(gè)單位長度(縱坐標(biāo)不變),然后將x軸下方的圖象翻折上去,即可得g(x)的圖象,故選C.法二:由函數(shù)f (x)xa滿足f (2)4,得2a4,a2,即g(x)|log2(x1)|,由g(x)的定義域?yàn)閤|x>1,排除B、D;由x0時(shí),g(x)0,排除A.故選C.函數(shù)的實(shí)際應(yīng)用問題 由題知法(1)(2018開封模擬)李冶(11921279),真定欒城(今河北省石家莊市)人,金元時(shí)期的數(shù)學(xué)家、詩人,晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中益古演段主要研究平面圖形問題:求圓的直徑、正方形的邊長等其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個(gè)圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計(jì)算)()A10步,50步 B20步,60步C30步,70步 D40步,80步(2)某工廠產(chǎn)生的廢氣經(jīng)過過濾后排放,過濾過程中廢氣的污染物數(shù)量P(毫克/升)與時(shí)間t(小時(shí))的關(guān)系為PP0ekt.如果在前5小時(shí)消除了10%的污染物,那么污染物減少19%需要花費(fèi)的時(shí)間為_小時(shí)解析(1)設(shè)圓池的半徑為r步,則方田的邊長為(2r40)步,由題意,得(2r40)23r213.75240,解得r10或r170(舍去),所以圓池的直徑為20步,方田的邊長為60步,故選B.(2)前5小時(shí)污染物消除了10%,此時(shí)污染物剩下90%,即t5時(shí),P0.9P0,代入,得(ek)50.9,ek0.9,PP0ektP0t.當(dāng)污染物減少19%時(shí),污染物剩下81%,此時(shí)P0.81P0,代入得0.81t,解得t10,即需要花費(fèi)10小時(shí)答案(1)B(2)10類題通法1解決函數(shù)實(shí)際應(yīng)用題的2個(gè)關(guān)鍵點(diǎn)(1)認(rèn)真讀題,縝密審題,準(zhǔn)確理解題意,明確問題的實(shí)際背景,然后進(jìn)行科學(xué)地抽象概括,將實(shí)際問題歸納為相應(yīng)的數(shù)學(xué)問題(2)要合理選取參變量,設(shè)定變量之后,就要尋找它們之間的內(nèi)在聯(lián)系,選用恰當(dāng)?shù)拇鷶?shù)式表示問題中的關(guān)系,建立相應(yīng)的函數(shù)模型,最終求解數(shù)學(xué)模型使實(shí)際問題獲解2構(gòu)建函數(shù)模型解決實(shí)際問題的常見類型與求解方法(1)構(gòu)建二次函數(shù)模型,常用配方法、數(shù)形結(jié)合、分類討論思想求解(2)構(gòu)建分段函數(shù)模型,應(yīng)用分段函數(shù)分段求解的方法(3)構(gòu)建f (x)x(a>0)模型,常用基本不等式、導(dǎo)數(shù)等知識(shí)求解應(yīng)用通關(guān)1某電腦公司在甲、乙兩地各有一個(gè)分公司,甲分公司現(xiàn)有某型號(hào)電腦6臺(tái),乙分公司現(xiàn)有同一型號(hào)的電腦12臺(tái)現(xiàn)A地某單位向該公司購買該型號(hào)的電腦10臺(tái),B地某單位向該公司購買該型號(hào)的電腦8臺(tái)已知從甲地運(yùn)往A,B兩地每臺(tái)電腦的運(yùn)費(fèi)分別是40元和30元,從乙地運(yùn)往A,B兩地每臺(tái)電腦的運(yùn)費(fèi)分別是80元和50元若總運(yùn)費(fèi)不超過1 000元,則調(diào)運(yùn)方案的種數(shù)為()A1 B2C3 D4解析:選C設(shè)甲地調(diào)運(yùn)x臺(tái)電腦至B地,則剩下(6x)臺(tái)電腦調(diào)運(yùn)至A地;乙地應(yīng)調(diào)運(yùn)(8x)臺(tái)電腦至B地,運(yùn)往A地12(8x)(x4)臺(tái)電腦(0x6,xN)則總運(yùn)費(fèi)y30x40(6x)50(8x)80(x4)20x960,y20x960(xN,0x6)若y1 000,則20x9601 000,得x2.又0x6,xN,x0,1,2,即有3種調(diào)運(yùn)方案2某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件該產(chǎn)品需另投入的成本為G(x)(單位:萬元),當(dāng)年產(chǎn)量不足80千件時(shí),G(x)x210x;當(dāng)年產(chǎn)量不小于80千件時(shí),G(x)51x1 450.已知每件產(chǎn)品的售價(jià)為0.05萬元通過市場分析,該工廠生產(chǎn)的產(chǎn)品能全部售完,則該工廠在這一產(chǎn)品的生產(chǎn)中所獲年利潤的最大值是_萬元解析:每件產(chǎn)品的售價(jià)為0.05萬元,x千件產(chǎn)品的銷售額為0.051 000x50x萬元當(dāng)0<x<80時(shí),年利潤L(x)50xx210x250x240x250(x60)2950,當(dāng)x60時(shí),L(x)取得最大值,且最大值為L(60)950萬元;當(dāng)x80時(shí),L(x)50x51x1 4502501 2001 2002 1 2002001 000,當(dāng)且僅當(dāng)x,即x100時(shí),L(x)取得最大值1 000萬元由于950<1 000,當(dāng)產(chǎn)量為100千件時(shí),該工廠在這一產(chǎn)品的生產(chǎn)中所獲年利潤最大,最大年利潤為1 000萬元答案:1 000重難增分函數(shù)的零點(diǎn)問題典例細(xì)解(2017全國卷)已知函數(shù)f (x)x22xa(ex1ex1)有唯一零點(diǎn),則a()AB.C. D1學(xué)解題(一)常規(guī)思路穩(wěn)解題法一:由函數(shù)f (x)有零點(diǎn),得x22xa(ex1ex1)0有解,即(x1)21a(ex1ex1)0有解,令tx1,則上式可化為t21a(etet)0,即a.令h(t),易得h(t)為偶函數(shù),又由f (x)有唯一零點(diǎn)得函數(shù)h(t)的圖象與直線ya有唯一交點(diǎn),則此交點(diǎn)的橫坐標(biāo)為0,所以a,故選C.法二:由f (x)0a(ex1ex1)x22x.ex1ex12 2,當(dāng)且僅當(dāng)x1時(shí)取“”x22x(x1)211,當(dāng)且僅當(dāng)x1時(shí)取“”若a>0,則a(ex1ex1)2a,要使f (x)有唯一零點(diǎn),則必有2a1,即a.若a0,則f (x)的零點(diǎn)不唯一綜上所述,a.(二)特殊思路妙解題法三:由f (x)x22xa(ex1ex1),得f (2x)(2x)22(2x)ae2x1e(2x)1x24x442xa(e1xex1)x22xa(ex1ex1),所以f (2x)f (x),即x1為f (x)圖象的對稱軸由題意,f (x)有唯一零點(diǎn),所以f (x)的零點(diǎn)只能為x1,即f (1)1221a(e11e11)0,解得a.故選C.答案C啟思維本題考查由函數(shù)零點(diǎn)情況求參數(shù)值思路一:先化簡f (x)的表達(dá)式,再換元轉(zhuǎn)化成關(guān)于t的函數(shù),利用函數(shù)的有關(guān)性質(zhì)求解思路二:先把f (x)轉(zhuǎn)化為二次函數(shù)與指數(shù)型函數(shù)相等問題,再分別考察它們的值域,利用唯一性求解思路三:觀察式子f (x)x22xa(ex1ex1)的結(jié)構(gòu)特點(diǎn)可知,g(x)x22x與h(x)a(ex1ex1)都有對稱性,可得出f (2x)f (x),由對稱性求解(2018全國卷)已知函數(shù)f (x)g(x)f (x)xa.若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是()A1,0) B0,)C1,) D1,)解析令h(x)xa,則g(x)f (x)h(x)在同一坐標(biāo)系中畫出yf (x),yh(x)的示意圖,如圖所示若g(x)存在2個(gè)零點(diǎn),則yf (x)的圖象與yh(x)的圖象有2個(gè)交點(diǎn),平移yh(x)的圖象,可知當(dāng)直線yxa過點(diǎn)(0,1)時(shí),有2個(gè)交點(diǎn),此時(shí)10a,a1.當(dāng)yxa在yx1上方,即a<1時(shí),僅有1個(gè)交點(diǎn),不符合題意當(dāng)yxa在yx1下方,即a>1時(shí),有2個(gè)交點(diǎn),符合題意綜上,a的取值范圍為1,)故選C.答案C啟思維本題主要考查函數(shù)與方程本題以高中兩個(gè)基本初等函數(shù)(指數(shù)函數(shù)和對數(shù)函數(shù))為載體,構(gòu)建分段函數(shù),與函數(shù)零點(diǎn)結(jié)合,需借助函數(shù)圖象解決問題破解此類題的關(guān)鍵:一是會(huì)轉(zhuǎn)化,把函數(shù)的零點(diǎn)問題轉(zhuǎn)化為方程的根的問題,再轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)問題;二是會(huì)借形解題,即畫出兩函數(shù)的圖象,由圖象的直觀性,可快速找到參數(shù)所滿足的不等式,解不等式,即可求出參數(shù)的取值范圍知能升級(jí)已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)(值)范圍的3種方法直接法直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式(組),再通過解不等式(組)確定參數(shù)的取值范圍分離參數(shù)法先將參數(shù)分離,轉(zhuǎn)化為求函數(shù)值域的問題加以解決數(shù)形結(jié)合法先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解增分集訓(xùn)1(2018洛陽第一次統(tǒng)考)已知函數(shù)f (x)滿足f (1x)f (1x)f (x1)(xR),且當(dāng)0x1時(shí),f (x)2x1,則方程|cos x|f (x)0在1,3上的所有根之和為()A8 B9C10 D11解析:選D方程|cos x|f (x)0在1,3上的所有根之和即y|cos x|與yf (x)在1,3上的圖象交點(diǎn)的橫坐標(biāo)之和由f (1x)f (1x)得f (x)的圖象關(guān)于直線x1對稱,由f (1x)f (x1)得f (x)的圖象關(guān)于y軸對稱,由f (1x)f (x1)得f (x)的一個(gè)周期為2,而當(dāng)0x1時(shí),f (x)2x1,在同一坐標(biāo)系中作出yf (x)和y|cos x|在1,3上的大致圖象,如圖所示,易知兩圖象在1,3上共有11個(gè)交點(diǎn),又yf (x),y|cos x|的圖象都關(guān)于直線x1對稱,故這11個(gè)交點(diǎn)也關(guān)于直線x1對稱,故所有根之和為11.2已知函數(shù)f (x)g(x)kx1,若方程f (x)g(x)0在x(2,2)上有三個(gè)實(shí)根,則實(shí)數(shù)k的取值范圍為()A(1,ln 2) B.C. D(1,ln 2)解析:選D顯然,x0不是方程f (x)g(x)0的根,則f (x)g(x)0,即k,可設(shè)k(x)由x<0,可得(x)x4242,當(dāng)且僅當(dāng)x,即x1時(shí)等號(hào)成立,即有(x)在x<0時(shí),有最大值(1)2;當(dāng)x>0時(shí),(x)ln x的導(dǎo)數(shù)為(x),當(dāng)x>1時(shí),(x)>0,(x)在(1,)上單調(diào)遞增;當(dāng)0<x<1時(shí),(x)<0,(x)在(0,1)上單調(diào)遞減可得(x)在x1處取得最小值1.作出(x)在(2,2)上的圖象如圖所示,由圖象得當(dāng)1<k<ln 2或<k<2時(shí),直線yk和y(x)的圖象均有三個(gè)交點(diǎn)則k的取值范圍是(1,ln 2).專題跟蹤檢測(對應(yīng)配套卷P167)一、全練保分考法保大分1若m,alg m,blg m2,clg3m,則a,b,c的大小關(guān)系是()Aa<b<cBc<a<bCb<a<c Db<c<a解析:選Cm,1<lg m<0,lg3mlg m(lg m1)(lg m1)lg m>0,lg3m>lg m,即c>a.又m,0<m2<m<1,lg m2<lg m,即a>B.b<a<c.故選C.2定義在R上的函數(shù)f (x)2|xm|1為偶函數(shù),記af (log0.53),bf (log25),cf (2m),則a,b,c的大小關(guān)系是()Aa<b<c Ba<c<bCc<a<b Dc<b<a解析:選C函數(shù)f (x)為偶函數(shù),m0,f (x)2|x|1.af (log0.53)f (log23)2log2312,bf (log25)2log2514,cf (0)2010.c<a<b.故選C.3(2018長沙一模)函數(shù)f (x)2x的圖象大致為()解析:選Af (x)2x2x1的定義域?yàn)?,1)(1,)f (x)2xln 2>0恒成立,f (x)在(,1)上單調(diào)遞增,在(1,)上單調(diào)遞增,排除C、D;當(dāng)x時(shí),2x0,1,f (x)1,排除B,選A.4已知函數(shù)f (x)則不等式log2x(log4x1)f (log3x1)5的解集為()A. B1,4C. D1,)解析:選C由不等式log2x(log4x1)f (log3x1)5,得或解得1x4或<x<1.故原不等式的解集為.故選C.5已知函數(shù)f (x)滿足條件f (loga(1)1,其中a>1,則f (loga(1)()A1 B2C3 D4解析:選Bf (x),f (x),f (x)f (x)3.loga(1)loga(1),f (loga(1)f (loga(1)3,f (loga(1)2.故選B.6(2019屆高三貴陽模擬)20世紀(jì)30年代,為了防范地震帶來的災(zāi)害,里克特(C.F.Richter)制定了一種表明地震能量大小的尺度,就是使用測震儀衡量地震能量的等級(jí),地震能量越大,測震儀記錄的地震曲線的振幅就越大,這就是我們常說的里氏震級(jí)M,其計(jì)算公式為Mlg Alg A0,其中A是被測地震的最大振幅,A0是“標(biāo)準(zhǔn)地震”的振幅已知5級(jí)地震給人的震感已經(jīng)比較明顯,則7級(jí)地震的最大振幅是5級(jí)地震的最大振幅的()A10倍 B20倍C50倍 D100倍解析:選D根據(jù)題意有l(wèi)g Alg A0lg 10Mlg(A010M),所以AA010M,則100.故選D.7(2018菏澤一模)已知loga<logb,則下列不等式一定成立的是()A.a<b B.>Cln(ab)>0 D3ab<1解析:選Aloga<logb,a>b>0,a<a<b,<,ln(ab)與0的大小關(guān)系不確定,3ab>1.因此只有A正確故選A.8已知實(shí)數(shù)x,y滿足ax<ay(0<a<1),則下列關(guān)系式恒成立的是()A.> Bln(x21)>ln(y21)Csin x>sin y Dx3>y3解析:選D實(shí)數(shù)x,y滿足ax<ay(0<a<1),x>y.對于選項(xiàng)A,>等價(jià)于x21<y21,即x2<y2.當(dāng)x1,y1時(shí),滿足x>y,但x2<y2不成立對于選項(xiàng)B,ln(x21)>ln(y21)等價(jià)于x2>y2,當(dāng)x1,y1時(shí),滿足x>y,但x2>y2不成立對于選項(xiàng)C,當(dāng)x,y時(shí),滿足x>y,但sin x>sin y不成立對于選項(xiàng)D,當(dāng)x>y時(shí),x3>y3恒成立故選D.9(2018廣元模擬)已知函數(shù)f (x)ex,g(x)ln,對任意aR,存在b(0,)使f (a)g(b),則ba的最小值為()A21 Be2C2ln 2 D2ln 2解析:選D令tea,可得aln t,令tln,可得b2,則ba2etln t,令h(t)2eln t,則h(t)2e.顯然,h(t)是增函數(shù),觀察可得當(dāng)t時(shí),h(t)0,故h(t)有唯一零點(diǎn),故當(dāng)t時(shí),h(t)取得最小值,即ba取得最小值為2eln 2ln 2,故選D.10已知函數(shù)f (x)是定義在R上的奇函數(shù),且在區(qū)間0,)上單調(diào)遞增,若<f (1),則x的取值范圍是()A. B(0,e)C. D(e,)解析:選C函數(shù)f (x)是定義在R上的奇函數(shù),f (ln x)f f (ln x)f (ln x)f (ln x)f (ln x)2f (ln x),<f (1)等價(jià)于|f (ln x)|<f (1),又f (x)在區(qū)間0,)上單調(diào)遞增,1<ln x<1,解得<x<e.11記函數(shù)f (x)x2mx(m>0)在區(qū)間0,2上的最小值為g(m)已知定義在(,0)(0,)上的函數(shù)h(x)為偶函數(shù),且當(dāng)x>0時(shí),h(x)g(x),若h(t)>h(4),則實(shí)數(shù)t的取值范圍為()A(4,0) B(0,4)C(2,0)(0,2) D(4,0)(0,4)解析:選D因?yàn)閒 (x)x2mx(m>0),所以f (x)2,因?yàn)閒 (x)在區(qū)間0,2上的最小值為g(m),所以當(dāng)0<m4,即0<2時(shí),g(m)f ;當(dāng)m>4,即>2時(shí),函數(shù)f (x)2在0,2上單調(diào)遞減,所以g(m)f (2)42m.綜上,g(m)因?yàn)楫?dāng)x>0時(shí),h(x)g(x),所以當(dāng)x>0時(shí),h(x)函數(shù)h(x)在(0,)上單調(diào)遞減因?yàn)槎x在(,0)(0,)上的函數(shù)h(x)為偶函數(shù),且h(t)>h(4),所以h(|t|)>h(4),所以0<|t|<4,所以即從而4<t<0或0<t<4.綜上所述,實(shí)數(shù)t的取值范圍為(4,0)(0,4)12(2019屆高三昆明調(diào)研)若函數(shù)f (x)2x1x22x2,對于任意的xZ且x(,a),f (x)0恒成立,則實(shí)數(shù)a的取值范圍是()A(,1 B(,0C(,3 D(,4解析:選D法一:f (x)2x1x22x20,即2x1x22x2.設(shè)g(x)2x1,h(x)x22x2,當(dāng)x1時(shí),0<g(x)1,h(x)x22x21,所以當(dāng)a1時(shí),滿足對任意的xZ且x(,a),f (x)0恒成立;當(dāng)1<x<4時(shí),因?yàn)間(0)h(0)2,g(1)4<h(1)5,g(2)8<h(2)10,g(3)16<h(3)17,所以1<a4時(shí),亦滿足對任意的xZ且x(,a),f (x)0恒成立;當(dāng)x4時(shí),易知f (x)2x1ln 22x2,設(shè)F(x)2x1ln 22x2,則F(x)2x1(ln 2)22>0,所以F(x)2x1ln 22x2在4,)上是增函數(shù),所以f (x)f (4)32ln 210>0,所以函數(shù)f (x)2x1x22x2在4,)上是增函數(shù),所以f (x)f (4)3216826>0,即a>4時(shí),不滿足對任意的xZ且x(,a),f (x)0恒成立綜上,實(shí)數(shù)a的取值范圍是(,4,故選D.法二:將問題轉(zhuǎn)化為2x1x22x2對于任意的xZ且x(,a)恒成立后,在同一個(gè)平面直角坐標(biāo)系中分別作出函數(shù)y2x1,yx22x2的圖象如圖所示,根據(jù)兩函數(shù)圖象的交點(diǎn)及位置關(guān)系,數(shù)形結(jié)合即可分析出實(shí)數(shù)a的取值范圍是(,4,故選D.13函數(shù)f (x)ln(x22x8)的單調(diào)遞增區(qū)間是_解析:由x22x80,得x4或x2.因此,函數(shù)f (x)ln(x22x8)的定義域是(,2)(4,)注意到函數(shù)yx22x8在(4,)上單調(diào)遞增,由復(fù)合函數(shù)的單調(diào)性知,f (x)ln(x22x8)的單調(diào)遞增區(qū)間是(4,)答案:(4,)14李華經(jīng)營了甲、乙兩家電動(dòng)轎車銷售連鎖店,其月利潤(單位:元)分別為L甲5x2900x16 000,L乙300x2 000(其中x為銷售輛數(shù)),若某月兩連鎖店共銷售了110輛,則能獲得的最大利潤為_元解析:設(shè)甲連鎖店銷售x輛,則乙連鎖店銷售(110x)輛,故利潤L5x2900x16 000300(110x)2 0005x2600x15 0005(x60)233 000,當(dāng)x60時(shí),有最大利潤33 000元答案:33 00015若函數(shù)f (x)與g(x)的圖象關(guān)于直線yx對稱,函數(shù)f (x)x,則f (2)g(4)_.解析:法一:函數(shù)f (x)與g(x)的圖象關(guān)于直線yx對稱,又f (x)x2x,g(x)log2x,f (2)g(4)22log246.法二:f (x)x,f (2)4,即函數(shù)f (x)的圖象經(jīng)過點(diǎn)(2,4),函數(shù)f (x)與g(x)的圖象關(guān)于直線yx對稱,函數(shù)g(x)的圖象經(jīng)過點(diǎn)(4,2),f (2)g(4)426.答案:616(2018福州模擬)設(shè)函數(shù)f (x)則滿足f (x22)>f (x)的x的取值范圍是_解析:由題意x>0時(shí),f (x)單調(diào)遞增,故f (x)>f (0)0,而x0時(shí),x0,故若f (x22)>f (x),則x22>x,且x22>0,解得x>2或x<.答案:(,)(2,)17如圖,在第一象限內(nèi),矩形ABCD的三個(gè)頂點(diǎn)A,B,C,分別在函數(shù)ylogx,yx,yx的圖象上,且矩形的邊分別平行于兩坐標(biāo)軸,若點(diǎn)A的縱坐標(biāo)是2,則點(diǎn)D的坐標(biāo)是_解析:由2logx可得點(diǎn)A,由2x可得點(diǎn)B(4,2),因?yàn)?,所以點(diǎn)C的坐標(biāo)為,所以點(diǎn)D的坐標(biāo)為.答案:18已知函數(shù)f (x)|log3x|,實(shí)數(shù)m,n滿足0<m<n,且f (m)f (n),若f (x)在m2,n上的最大值為2,則_.解析:f (x)|log3x|所以f (x)在(0,1)上單調(diào)遞減,在(1,)上單調(diào)遞增,由0<m<n且f (m)f (n),可得則所以0<m2<m<1,則f (x)在m2,1)上單調(diào)遞減,在(1,n上單調(diào)遞增,所以f (m2)>f (m)f (n),則f (x)在m2,n上的最大值為f (m2)log3m22,解得m,則n3,所以9.答案:919.(2018西安八校聯(lián)考)如圖所示,已知函數(shù)ylog24x圖象上的兩點(diǎn)A,B和函數(shù)ylog2x圖象上的點(diǎn)C,線段AC平行于y軸,當(dāng)ABC為正三角形時(shí),點(diǎn)B的橫坐標(biāo)為_解析:依題意,當(dāng)ACy軸,ABC為正三角形時(shí),|AC|log24xlog2x2,點(diǎn)B到直線AC的距離為,設(shè)點(diǎn)B(x0,2log2x0),則點(diǎn)A(x0,3log2x0)由點(diǎn)A在函數(shù)ylog24x的圖象上,得log24(x0)3log2x0log28x0,則4(x0)8x0,x0,即點(diǎn)B的橫坐標(biāo)是.答案:20已知函數(shù)f (x)在0,1上單調(diào)遞增,則a的取值范圍為_解析:令2xt,t1,2,則y在1,2上單調(diào)遞增當(dāng)a0時(shí),y|t|t在1,2上單調(diào)遞增顯然成立;當(dāng)a>0時(shí),函數(shù)y,t(0,)的單調(diào)遞增區(qū)間是,),此時(shí)1,即0<a1時(shí)成立;當(dāng)a<0時(shí),函數(shù)yt,t(0,)的單調(diào)遞增區(qū)間是,),此時(shí)1,即1a<0時(shí)成立綜上可得a的取值范圍是1,1答案:1,1二、強(qiáng)化壓軸考法拉開分1設(shè)函數(shù)f (x)log4xx,g(x)logxx的零點(diǎn)分別為x1,x2,則()Ax1x21 B0<x1x2<1C1<x1x2<2 Dx1x22解析:選B由題意可得x1是函數(shù)ylog4x的圖象和yx的圖象的交點(diǎn)的橫坐標(biāo),x2是ylogx的圖象和函數(shù)yx的圖象的交點(diǎn)的橫坐標(biāo),且x1,x2都是正實(shí)數(shù),畫出函數(shù)圖象如圖所示,可得logx2>log4x1,故log4x1logx2<0,log4x1log4x2<0,log4(x1x2)<0,0<x1x2<1.故選B.2(2018唐山模擬)若函數(shù)f (x)x在1,1上有兩個(gè)不同的零點(diǎn),則的取值范圍為()A1,) B(,)C(,1 D1,1解析:選C函數(shù)f (x)x在1,1上有兩個(gè)不同的零點(diǎn)等價(jià)于y與yx的圖象在1,1上有兩個(gè)不同的交點(diǎn)y,x1,1為圓x2y21的上半圓如圖,當(dāng)直線yx過點(diǎn)(0,1)時(shí)兩函數(shù)圖象有兩個(gè)交點(diǎn),此時(shí)1,當(dāng)直線yx與圓x2y21上半圓相切時(shí),.所以的取值范圍為(,1故選C.3已知f (x)是定義在R上的奇函數(shù),且x0時(shí),f (x)ln xx1,則函數(shù)g(x)f (x)ex(e為自然對數(shù)的底數(shù))的零點(diǎn)個(gè)數(shù)是()A0 B1C2 D3解析:選C當(dāng)x0時(shí),f (x)ln xx1,f (x)1,所以x(0,1)時(shí),f (x)0,此時(shí)f (x)單調(diào)遞增;x(1,)時(shí),f (x)0,此時(shí)f (x)單調(diào)遞減因此,當(dāng)x0時(shí),f (x)maxf (1)ln 1110.根據(jù)函數(shù)f (x)是定義在R上的奇函數(shù)作出函數(shù)yf (x)與yex的大致圖象如圖所示,由圖象可知函數(shù)yf (x)與yex的圖象有兩個(gè)交點(diǎn),所以函數(shù)g(x)f (x)ex(e為自然對數(shù)的底數(shù))有2個(gè)零點(diǎn)4(2018涼山模擬)設(shè)函數(shù)f (x)若函數(shù)f (x)的圖象上有四個(gè)不同的點(diǎn)A,B,C,D同時(shí)滿足:A,B,C,D,O(原點(diǎn))五點(diǎn)共線;共線的這條直線斜率為3,則a的取值范圍是()A(2,) B(,4)C(,2) D(4,)解析:選A由題意知f (x)的圖象與直線y3x有4個(gè)交點(diǎn)令ln x2x23x,可得ln x2x23x,作出yln x與y2x23x的圖象如圖所示由圖象可知兩函數(shù)圖象在y軸右側(cè)有兩個(gè)交點(diǎn),當(dāng)x>0時(shí),f (x)的圖象與直線y3x有兩個(gè)交點(diǎn),當(dāng)x<0時(shí),f (x)的圖象與直線y3x有兩個(gè)交點(diǎn)a3x在(,0)上有兩解即3x2ax10在(,0)上有兩解解得a>2.故選A.5(2019屆高三西安八校聯(lián)考)已知函數(shù)f (x)若方程f (x)ax0恰有兩個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值范圍是()A. B.C. D(,0解析:選B方程f (x)ax0有兩個(gè)不同的實(shí)根,即直線yax與函數(shù)f (x)的圖象有兩個(gè)不同的交點(diǎn)作出函數(shù)f (x)的圖象如圖所示當(dāng)x>1時(shí),f (x)ln x,得f (x),設(shè)直線ykx與函數(shù)f (x)ln x(x>1)的圖象相切,切點(diǎn)為(x0,y0),則,解得x0e,則k,即yx是函數(shù)f (x)ln x(x>1)的圖象的切線,當(dāng)a0時(shí),直線yax與函數(shù)f (x)的圖象有一個(gè)交點(diǎn),不合題意;當(dāng)0<a<時(shí),直線yax與函數(shù)yln x(x>1)的圖象有兩個(gè)交點(diǎn),但與yx1(x1)也有一個(gè)交點(diǎn),這樣就有三個(gè)交點(diǎn),不合題意;當(dāng)a時(shí),直線yax與函數(shù)f (x)的圖象至多有一個(gè)交點(diǎn),不合題意;只有當(dāng)a<時(shí),直線yax與函數(shù)f (x)的圖象有兩個(gè)交點(diǎn),符合題意故選B.6(2018濰坊模擬)已知函數(shù)f (x)(x23)ex,若關(guān)于x的方程f 2(x)mf (x)0的不同的實(shí)數(shù)根的個(gè)數(shù)為n,則n的所有可能值為()A3 B1或3C3或5 D1或3或5解析:選A由f (x)(x23)ex,得f (x)(x22x3)ex(x3)(x1)ex,令f (x)>0,得x<3或x>1,令f (x)<0,得3<x<1,所以f (x)在(,3)和(1,)上單調(diào)遞增,在(3,1)上單調(diào)遞減,當(dāng)x時(shí),f (x)0,所以f (x)極大值f (3),f (x)極小值f (1)2e,作出f (x)的大致圖象如圖所示令tf (x),則f 2(x)mf (x)0可轉(zhuǎn)化為t2mt0,m2>0,且t時(shí),2m<0,所以方程有兩個(gè)不同的實(shí)數(shù)根t1,t2,所以t1t2(2e),不妨設(shè)t1>0,所以當(dāng)t1>時(shí),2e<t2<0,由f (x)的圖象可知,此時(shí)t2f (x)有2個(gè)不同的實(shí)數(shù)根,t1f (x)有1個(gè)根,所以方程f 2(x)mf (x)0有3個(gè)不同的實(shí)數(shù)根,當(dāng)t1時(shí),t22e,由f (x)的圖象可知,此時(shí)t2f (x)有1個(gè)根,t1f (x)有2個(gè)不同的實(shí)數(shù)根,所以方程f 2(x)mf (x)0有3個(gè)不同的實(shí)數(shù)根,當(dāng)0<t1<時(shí),t2<2e,由f (x)的圖象可知t2f (x)有0個(gè)根,t1f (x)有3個(gè)不同的實(shí)數(shù)根,所以方程f 2(x)mf (x)0有3個(gè)不同的實(shí)數(shù)根綜上所述,方程有3個(gè)不同的實(shí)數(shù)根7(2018南寧模擬)設(shè)函數(shù)f (x)是定義在R上的偶函數(shù),且f (x2)f (2x),當(dāng)x2,0時(shí),f (x)x1,若在區(qū)間(2,6)內(nèi)關(guān)于x的方程f (x)loga(x2)0(a>0且a1)有且只有4個(gè)不同的根,則實(shí)數(shù)a的取值范圍是()A. B(1,4)C(1,8) D(8,)解析:選Df (x2)f (2x),f (x4)f (2(x2)f (2(x2)f (x)f (x),函數(shù)f (x)是一個(gè)周期函數(shù),且T4.又當(dāng)x2,0時(shí),f (x)x1()x1,當(dāng)x0,2時(shí),f (x)f (x)()x1,于是x2,2時(shí),f (x)()|x|1,根據(jù)f (x)的周期性作出f (x)的圖象如圖所示若在區(qū)間(2,6)內(nèi)關(guān)于x的方程f (x)loga(x2)0有且只有4個(gè)不同的根,則a>1且yf (x)與yloga(x2)(a>1)的圖象在區(qū)間(2,6)內(nèi)有且只有4個(gè)不同的交點(diǎn),f (2)f (2)f (6)1,對于函數(shù)yloga(x2)(a>1),當(dāng)x6時(shí),loga8<1,解得a>8,即實(shí)數(shù)a的取值范圍是(8,),所以選D.8已知在區(qū)間(0,2上的函數(shù)f (x)且g(x)f (x)mx在區(qū)間(0,2內(nèi)有且僅有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是()A. B.C. D.解析:選A由函數(shù)g(x)f (x)mx在(0,2內(nèi)有且僅有兩個(gè)不同的零點(diǎn),得yf (x),ymx在(0,2內(nèi)的圖象有且僅有兩個(gè)不同的交點(diǎn)當(dāng)ymx與y3在(0,1內(nèi)相切時(shí),mx23x10,94m0,m,結(jié)合圖象可得當(dāng)<m2或0<m時(shí),函數(shù)g(x)f (x)mx在(0,2內(nèi)有且僅有兩個(gè)不同的零點(diǎn)