《精編數(shù)學(xué)北師大版選修23教案 第二章 第四課時(shí) 超幾何分布 Word版含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《精編數(shù)學(xué)北師大版選修23教案 第二章 第四課時(shí) 超幾何分布 Word版含答案(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、精編北師大版數(shù)學(xué)資料一、教學(xué)目標(biāo): 1、通過(guò)實(shí)例,理解超幾何分布及其特點(diǎn);2、掌握超幾何分布列及其導(dǎo)出過(guò)程;3、通過(guò)對(duì)實(shí)例的分析,會(huì)進(jìn)行簡(jiǎn)單的應(yīng)用。二、教學(xué)重難點(diǎn):重點(diǎn):超幾何分布的理解;分布列的推導(dǎo)。難點(diǎn):具體應(yīng)用。三、教學(xué)方法:討論交流,探析歸納四、教學(xué)過(guò)程(一)、復(fù)習(xí)引入:1、隨機(jī)變量:如果隨機(jī)試驗(yàn)的結(jié)果可以用一個(gè)變量來(lái)表示,那么這樣的變量叫做隨機(jī)變量隨機(jī)變量常用希臘字母、等表示2. 離散型隨機(jī)變量: 隨機(jī)變量 只能取有限個(gè)數(shù)值 或可列無(wú)窮多個(gè)數(shù)值 則稱 為離散隨機(jī)變量,在高中階段我們只研究隨機(jī)變量 取有限個(gè)數(shù)值的情形.3. 分布列:設(shè)離散型隨機(jī)變量可能取得值為 x1,x2,x3,取每一
2、個(gè)值xi(i=1,2,)的概率為,則稱表x1x2xiPP1P2Pi為隨機(jī)變量的概率分布,簡(jiǎn)稱的分布列 4. 分布列的兩個(gè)性質(zhì):任何隨機(jī)事件發(fā)生的概率都滿足:,并且不可能事件的概率為0,必然事件的概率為1由此你可以得出離散型隨機(jī)變量的分布列都具有下面兩個(gè)性質(zhì):Pi0,i1,2,; P1+P2+=1對(duì)于離散型隨機(jī)變量在某一范圍內(nèi)取值的概率等于它取這個(gè)范圍內(nèi)各個(gè)值的概率的和即 X10Pp1-p(二)、探析新課:1、二點(diǎn)分布:如果隨機(jī)變量X的分布列為:2、超幾何分布在產(chǎn)品質(zhì)量的不放回抽檢中,若件產(chǎn)品中有件次品,抽檢件時(shí)所得次品數(shù)X=m則.此時(shí)我們稱隨機(jī)變量X服從超幾何分布1)超幾何分布的模型是不放回抽
3、樣2)超幾何分布中的參數(shù)是M,N,n(三)、知識(shí)方法應(yīng)用例1在一個(gè)口袋中裝有30個(gè)球,其中有10個(gè)紅球,其余為白球,這些球除顏色外完全相同.游戲者一次從中摸出5個(gè)球.摸到4個(gè)紅球就中一等獎(jiǎng),那么獲一等獎(jiǎng)的概率是多少?解:由題意可見(jiàn)此問(wèn)題歸結(jié)為超幾何分布模型由上述公式得 例2.一批零件共100件,其中有5件次品.現(xiàn)在從中任取10件進(jìn)行檢查,求取道次品件數(shù)的分布列.解:由題意X012345P0583750.339390.070220.006380.000250.00001例3、4名男生和2名女生中任選3人參加演講比賽,設(shè)隨機(jī)變量表示所選三人中女生人數(shù).(1)求得分布列;(2)求所選三人中女生人數(shù)的
4、概率.解:(1)012 (2)例4、交5元錢(qián),可以參加一次摸獎(jiǎng),一袋中有同樣大小的球10個(gè),其中8個(gè)標(biāo)有1元錢(qián),2個(gè)標(biāo)有5元錢(qián),摸獎(jiǎng)?wù)咧荒軓闹腥稳?個(gè)球,他所得獎(jiǎng)勵(lì)是所抽2球的錢(qián)數(shù)之和,求抽獎(jiǎng)人所得錢(qián)數(shù)的分布列.2610例4、由180只集成電路組成的一批產(chǎn)品中,有8只是次品,現(xiàn)從中任抽4只,用表示其中的次品數(shù),試求:(1)抽取的4只中恰好有只次品的概率;(2)抽取的4只產(chǎn)品中次品超過(guò)1只的概率.練習(xí):3、從分別標(biāo)有數(shù)字1,2,3,4,5,6,7,8,9的9張卡片中任取2張,則兩數(shù)之和是奇數(shù)的概率是_.【】0120.10.60.34、從裝有3個(gè)紅球,2個(gè)白球的袋中隨機(jī)取出2個(gè)球,設(shè)其中有個(gè)紅球,則得分布列是_.(四)、小結(jié):超幾何分布:在產(chǎn)品質(zhì)量的不放回抽檢中,若件產(chǎn)品中有件次品,抽檢件時(shí)所得次品數(shù)X=m則.此時(shí)我們稱隨機(jī)變量X服從超幾何分布1)超幾何分布的模型是不放回抽樣2)超幾何分布中的參數(shù)是M,N,n。(五)、作業(yè)布置:課本P42頁(yè)習(xí)題2-2中1、3、4