2014《現(xiàn)代控制理論》學(xué)習(xí)指導(dǎo)書及部分題目答案
《2014《現(xiàn)代控制理論》學(xué)習(xí)指導(dǎo)書及部分題目答案》由會員分享,可在線閱讀,更多相關(guān)《2014《現(xiàn)代控制理論》學(xué)習(xí)指導(dǎo)書及部分題目答案(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、現(xiàn)代控制理論學(xué)習(xí)指導(dǎo)書 第一部分 重點要點 線性系統(tǒng)理論 線性系統(tǒng)數(shù)學(xué)模型 穩(wěn)定性、可控性和可觀測性 單變量極點配置的條件和方法。 最優(yōu)控制理論 變分法 極小值原理 最優(yōu)性原理 動態(tài)規(guī)劃 最優(yōu)估計理論 參數(shù)估計方法 掌握最小方差估計和線性最小方差估計方法 狀態(tài)估計方法 預(yù)測法,濾波 系統(tǒng)辨識理論 經(jīng)典辨識方法 最小二乘辨識方法 系統(tǒng)模型確定方法 自適應(yīng)控制理論 用脈沖響應(yīng)求傳遞函數(shù)的原理和方法。 兩種設(shè)計方法 智能控制理論 掌握智能控制的基本概念、基本方法以及智能控制的特點。 了解分級遞階智能控制、專家控
2、制、神經(jīng)網(wǎng)絡(luò)控制、模糊控制、學(xué)習(xí)控制和遺傳算法控制的基本概念 第二部分 練習(xí)題 填空題 1.自然界存在兩類系統(tǒng):______靜態(tài)系統(tǒng)____和______動態(tài)系統(tǒng)____。 2.系統(tǒng)的數(shù)學(xué)描述可分為___外部描述_______和___內(nèi)部描述_______兩種類型。 3.線性定常連續(xù)系統(tǒng)在輸入為零時,由初始狀態(tài)引起的運動稱為___自由運動_______。 4. _____穩(wěn)定性、能控性、能觀測性__均是系統(tǒng)的重要結(jié)構(gòu)性質(zhì)。 5.互為對偶系統(tǒng)的__特征方程________和___特征值_______相同。 6.任何狀態(tài)不完全能控的線性定常連續(xù)系統(tǒng),總可以分解成____完全能控_
3、_____子系統(tǒng)和____完全不能控______ 子系統(tǒng)兩部分。 7.任何狀態(tài)不完全能觀的線性定常連續(xù)系統(tǒng),總可以分解成__完全能觀測________子系統(tǒng)和____完全不能觀測______子系統(tǒng)兩部分。 8.對狀態(tài)不完全能控又不完全能觀的線性定常連續(xù)系統(tǒng),總可以將系統(tǒng)分解___能控又能觀測、能控但不能觀測、不能控但能觀測、不能控又不能觀測四個子系統(tǒng)。 9.對SISO系統(tǒng),狀態(tài)完全能控能觀的充要條件是系統(tǒng)的傳遞函數(shù)沒有__零極點對消_。 10.李氏穩(wěn)定性理論討論的是動態(tài)系統(tǒng)各平衡態(tài)附近的局部穩(wěn)定性問題。 11.經(jīng)典控制理論討論的是__在有界輸入下,是否產(chǎn)生有界輸出的輸入輸出穩(wěn)定性問
4、題,李氏方法討論的是_動態(tài)系統(tǒng)各平衡態(tài)附近的局部穩(wěn)定性問題。 12. ___狀態(tài)反饋_______和__輸出反饋________是控制系統(tǒng)設(shè)計中兩種主要的反饋策略。 13.綜合問題的性能指標可分為優(yōu)化型和非優(yōu)化型性能指標。 14.狀態(tài)反饋不改變被控系統(tǒng)的___能控性_______;輸出反饋不改變被控系統(tǒng)的___能控性_______和____能觀測性______ 15.狀態(tài)方程揭示了系統(tǒng)的內(nèi)部特征,也稱為__內(nèi)部描述________。 16.控制系統(tǒng)的穩(wěn)定性,包括____外部______穩(wěn)定性和____內(nèi)部______穩(wěn)定性。 17.對于完全能控的受控對象,不能采用____輸出反饋_
5、_____至參考信號入口處的結(jié)構(gòu)去實現(xiàn)閉環(huán)極點的任意配置。 18.在狀態(tài)空間分析中,常用___狀態(tài)結(jié)果圖_______來反映系統(tǒng)各狀態(tài)變量之間的信息傳遞關(guān)系。 19.為了便于求解和研究控制系統(tǒng)的狀態(tài)響應(yīng),特定輸入信號一般采用脈沖函數(shù)、__階躍函數(shù)________ 和斜坡函數(shù)等輸入信號。 21.當且僅當系統(tǒng)矩陣A的所有特征值都具有_負實部_________時,系統(tǒng)在平衡狀態(tài)時漸近穩(wěn)定的。 22.同一個系統(tǒng),狀態(tài)變量的選擇不是___唯一_______的。 23、數(shù)學(xué)模型可以有許多不同的形式,較常見的有三種: 第一種是:把系統(tǒng)的輸入量和輸出量之間的關(guān)系用數(shù)學(xué)方式表達出來,稱之為
6、 ; 第二種是:不僅可以描述系統(tǒng)輸入、輸出之間的關(guān)系,而且還可以描述系統(tǒng)的內(nèi)部特性,稱之為 ; 第三種是: 。 24、最優(yōu)控制研究的主要問題是:根據(jù)已經(jīng)建立的被控對象的數(shù)學(xué)模型,選擇一個容許的控制規(guī)律,使得被控對象按預(yù)定的要求運行,并使給定的某一性能指標達到 。 25、李亞普諾夫第一方法又稱為間接法。它適用于線
7、性定常系統(tǒng)和非線性不很嚴重的實際系統(tǒng)。李亞普諾夫第一方法的主要結(jié)論如下: (1) 線性定常系統(tǒng)漸近穩(wěn)定的充分必要條件是,系統(tǒng)矩陣A的所有特征值 。 (2) 若線性化系統(tǒng)的系統(tǒng)矩陣A的所有特征值均具有負實部,則實際系統(tǒng)就是 。線性化過程中忽略的高階導(dǎo)數(shù)項對系統(tǒng)的穩(wěn)定性沒有影響。 (3) 如果系統(tǒng)矩陣A的特征值中,只要有一個實部為正的特征值,則實際系統(tǒng)就是 。 (4) 如果系統(tǒng)矩陣A的特征值中,即使只有一個實部為零,其余的都具有負
8、實部,那么實際系統(tǒng)的穩(wěn)定性就 。這時系統(tǒng)的穩(wěn)定性將與線性化過程中被忽略的高階導(dǎo)數(shù)項有關(guān)。為了判定原系統(tǒng)的穩(wěn)定性,必須分析原始的非線性模型。 可見,李亞普諾夫第一方法是通過判定系統(tǒng)矩陣的特征值實部的符號來判定系統(tǒng)的穩(wěn)定性,因此又稱為 。 簡答題 1、線性變換的基本性質(zhì)包括哪兩個不變性? 2、線性定常續(xù)系統(tǒng)狀態(tài)方程的解由哪兩個部分組成? 3、何為系統(tǒng)一致能控? 系統(tǒng)對于任意的t0Etd均是狀態(tài)完全能控的。 4、何謂系統(tǒng)的實現(xiàn)問題? 由系統(tǒng)傳遞函數(shù)建立狀
9、態(tài)空間模型這類問題稱為系統(tǒng)實現(xiàn)問題。 5、何謂平衡態(tài)? 6、簡述李雅普諾夫第二法的含義y 7、簡述狀態(tài)空間描述與傳遞函數(shù)的區(qū)別y 8、試解對偶原理y 9、試解析自動控制理論與現(xiàn)代控制理論的差別 10、試解析穩(wěn)定 y 11、試解析能控性 12、試解析動態(tài)方程 13、動態(tài)系統(tǒng) :對于任意時刻t,系統(tǒng)的輸出不僅和t有關(guān),而且與t時刻以前的累積有關(guān),這類系統(tǒng)稱為動態(tài)系統(tǒng)。 14、狀態(tài)、狀態(tài)方程狀態(tài):系統(tǒng)運動信息的合集。狀態(tài)方程:系統(tǒng)的狀態(tài)變量與輸入之間的關(guān)系用一組一階微分方程來描述的數(shù)學(xué)模型稱之為狀態(tài)方程 15、狀態(tài)變量指能完全表征系統(tǒng)運動狀態(tài)的最小一組變量。狀態(tài)向量:
10、若一個系統(tǒng)有n個彼此獨立的狀態(tài)變量x1(t),x2(t)…xn(t),用它們作為分量所構(gòu)成的向量x(t),就稱為狀態(tài)向量。狀態(tài)空間表達式:狀態(tài)方程和輸出方程結(jié)合起來,構(gòu)成對一個系統(tǒng)動態(tài)行為的完整描述。 16、x(t)=Φ(t-t0)x(t0)的物理意義 :是自由運動的解僅是初始狀態(tài)的轉(zhuǎn)移,狀態(tài)轉(zhuǎn)移矩陣包含了系統(tǒng)自由運動的全部信息,其唯一決定了系統(tǒng)中各狀態(tài)變量的自由運動。 17、李氏函數(shù)具有什么性質(zhì)?正定性,負定型,正半定性,負半定性,不定性 18、何謂系統(tǒng)的最小實現(xiàn)?將維數(shù)最小的實現(xiàn)稱為系統(tǒng)的最小實現(xiàn)。 選擇題 1、一個線性系統(tǒng)的狀態(tài)空間描述( B ) A. 是唯一的;
11、 B. 不是唯一的 C. 是系統(tǒng)的內(nèi)部描述;D.是系統(tǒng)的外部描述 2、設(shè)系統(tǒng)的狀態(tài)空間方程為=X+u,則其特征根為( D ) A. s1= -2,s2= -3;B. s1= 2,s2= 3;C. s1= 1,s2= -3;D. s1=-1,s2=-2 3、狀態(tài)轉(zhuǎn)移矩陣(t)的重要性質(zhì)有( D )。 A. φ(0)=0; B. φ-1(t)= -φ(t); C. φk(t)=kφ(t); D .φ(t1+t2)=φ(t1)? φ(t2) 4、系統(tǒng)矩陣A=,則狀態(tài)轉(zhuǎn)移矩陣φ(t)= ( C ) A. ; B. ; C. ; D.
12、; 5、 設(shè)系統(tǒng)=X+u,y=x,則該系統(tǒng)( A )。 A. 狀態(tài)能控且能觀測; B.狀態(tài)能控但不能觀測; C. 狀態(tài)不能控且不能觀測 D.狀態(tài)不能控且能觀測; 6、若系統(tǒng)=X+u,y=x是能觀測的,則常數(shù)a取值范圍是( C )。 A.a(chǎn) ≠ 1;B.a(chǎn) = 1;C.a(chǎn) ≠ 0;D.a(chǎn) = 0; 7、 線性系統(tǒng)和互為對偶系統(tǒng),則( AD ) A. C1=B2T;B. C1=B2;C. C1=C2;D. C1=B2T 8、李雅普諾夫函數(shù)V(x)=(x1+x2)2,則V(x)是( C ) A. 負定的;B. 正定的;C. 半正定的;D. 不定的 9、單位脈
13、沖響應(yīng)的拉氏變換為( B ) A. ; B. ; C. 0; D. 1 10、通過狀態(tài)反饋能鎮(zhèn)定的充分必要條件是,漸近穩(wěn)定的子系統(tǒng)是( B ) A. 能控; B.不能控; C. 能觀測; D. 不能觀測 判斷題 1、 BIBO 穩(wěn)定的系統(tǒng)是平衡狀態(tài)漸近穩(wěn)定。 ( n ) 2、 一個系統(tǒng)能正常工作,穩(wěn)定性是最基本的要求。 ( y ) 3、 如果系統(tǒng)的狀態(tài)不能測得,只要系統(tǒng)能觀測,可以采用狀態(tài)觀測器實現(xiàn)狀態(tài)重構(gòu)。
14、 ( y ) 4、 輸出比例反饋系統(tǒng)能實現(xiàn)系統(tǒng)特征值的任意配置。 ( n ) 5、 對一個多級決策過程來說,最優(yōu)性原理保證了全過程的性能指標最小,并不保證每一級性能指標最小。 ( y ) 6、 一個系統(tǒng),狀態(tài)變量的數(shù)目和選取都是惟一的。 ( n ) 7、 傳遞函數(shù)矩陣的描述與狀態(tài)變量選擇無關(guān)。 ( y ) 8、 狀態(tài)方程是矩陣代數(shù)方程,輸出方程是矩陣微
15、分方程。 ( n ) 9、 對于任意的初始狀態(tài)和輸入向量,系統(tǒng)狀態(tài)方程的解存在并且惟一。 ( y ) 10、傳遞函數(shù)矩陣也能描述系統(tǒng)方程中能控不能觀測部分的特性。 ( n ) 計算題 1、設(shè)系統(tǒng)的狀態(tài)空間描述為=X,試分析系統(tǒng)在平衡狀態(tài)的穩(wěn)定性。(10分)y 2、設(shè)某控制系統(tǒng)的模擬結(jié)構(gòu)圖如下, 試判斷系統(tǒng)的能控性、能觀性和穩(wěn)定性。 【解答】 根據(jù)模擬結(jié)構(gòu)圖可得狀態(tài)空間表達式 寫成矩陣形式為 ,,。
16、 系統(tǒng)的特征方程為 顯然系統(tǒng)漸近穩(wěn)定。 系統(tǒng)的能控性矩陣為,顯然,滿秩,所以系統(tǒng)狀態(tài)完全能控。 系統(tǒng)的能觀性矩陣為,顯然,滿秩,所以系統(tǒng)狀態(tài)完全能觀。 3、某系統(tǒng)的狀態(tài)空間表達式為 設(shè)計一個全維狀態(tài)觀測器,使觀測器的兩個極點均為。 【解答】 設(shè)全維觀測器方程為 觀測器特征多項式為 觀測器期望特征多項式為 根據(jù)多項式恒等的條件得 解得,全維狀態(tài)觀測器方程為 4、求系統(tǒng)的傳遞函數(shù)。 解: 由狀態(tài)空間表達式得到傳遞函數(shù)的公式為: 由 得 于是 5、已知系統(tǒng)的傳遞函數(shù)為,求狀態(tài)空間
17、表達式。 6、已知系統(tǒng)的狀態(tài)方程為,試確定系統(tǒng)增益k的穩(wěn)定范圍。 7、已知線性定常系統(tǒng)(A,B,C),,試判斷系統(tǒng)是否完全能觀?若不完全能觀,按能觀性進行分解。 8、化狀態(tài)方程為對角線標準形。 9、考慮如圖的質(zhì)量彈簧系統(tǒng)。其中,m為運動物體的質(zhì)量,k為彈簧的彈性系數(shù),h為阻尼器的阻尼系數(shù),f為系統(tǒng)所受外力。取物體位移為狀態(tài)變量x1,速度為狀態(tài)變量x2,并取位移為系
18、統(tǒng)輸出y,外力為系統(tǒng)輸入u,試建立系統(tǒng)的狀態(tài)空間表達式。 10、矩陣是的常數(shù)矩陣,關(guān)于系統(tǒng)的狀態(tài)方程式,有 時,;時,。 試確定狀態(tài)轉(zhuǎn)移矩陣和矩陣。 解 因為系統(tǒng)的零輸入響應(yīng)是 所以, 將它們綜合起來,得 而狀態(tài)轉(zhuǎn)移矩陣的性質(zhì)可知,狀態(tài)轉(zhuǎn)移矩陣滿足微分方程和初始條件 因此代入初始時間可得矩陣為: 11、設(shè)系統(tǒng)為 試求出在輸入為時系統(tǒng)的狀態(tài)響應(yīng)。 解: . 12、已知系統(tǒng),寫出其對偶系統(tǒng)。 解: 13、有系統(tǒng): A. 畫出模擬結(jié)構(gòu)圖。 B. 若動態(tài)性能不滿足要求,可否任意配置極點? C. 若指定極點為-3,-3,求狀態(tài)反饋陣。 14、時不變系統(tǒng) D. 試用兩種方法判別其能控性和能觀性。() 友情提示:部分文檔來自網(wǎng)絡(luò)整理,供您參考!文檔可復(fù)制、編制,期待您的好評與關(guān)注! 12 / 12
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。