2019-2020年高考數(shù)學(xué)試題分項(xiàng)版解析 專題16 選修部分 理(含解析).doc
《2019-2020年高考數(shù)學(xué)試題分項(xiàng)版解析 專題16 選修部分 理(含解析).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)試題分項(xiàng)版解析 專題16 選修部分 理(含解析).doc(17頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)試題分項(xiàng)版解析 專題16 選修部分 理(含解析)1.【xx高考北京,理11】在極坐標(biāo)系中,點(diǎn)到直線的距離為【答案】1【解析】先把點(diǎn)極坐標(biāo)化為直角坐標(biāo),再把直線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用點(diǎn)到直線距離公式.考點(diǎn)定位:本題考點(diǎn)為極坐標(biāo)方程與直角坐標(biāo)方程的互化及求點(diǎn)到直線距離,要求學(xué)生熟練使用極坐標(biāo)與直角坐標(biāo)互化公式進(jìn)行點(diǎn)的坐標(biāo)轉(zhuǎn)化及曲線方程的轉(zhuǎn)化,熟練使用三個(gè)距離公式,包括兩點(diǎn)間的距離、點(diǎn)到直線的距離、兩條平行線的距離.【名師點(diǎn)睛】本題考查極坐標(biāo)基礎(chǔ)知識(shí),要求學(xué)生使用互化公式熟練進(jìn)行點(diǎn)的坐標(biāo)轉(zhuǎn)化及曲線方程的轉(zhuǎn)化,然后利用點(diǎn)到直線距離公式求出距離,本題屬于基礎(chǔ)題,先把點(diǎn)的極坐標(biāo)化為直角坐標(biāo),再把直線的極坐標(biāo)方程化為直角坐標(biāo)方程,最后求點(diǎn)到直線的距離.2.【xx高考湖北,理15】(選修4-1:幾何證明選講)如圖,是圓的切線,為切點(diǎn),是圓的割線,且,則 . 第15題圖【答案】【解析】因?yàn)槭菆A的切線,為切點(diǎn),是圓的割線,由切割線定理知,因?yàn)?,所以,即,由,所?【考點(diǎn)定位】圓的切線、割線,切割線定理,三角形相似.【名師點(diǎn)睛】判定兩個(gè)三角形相似要注意結(jié)合圖形的性質(zhì)特點(diǎn)靈活選擇判定定理在一個(gè)題目中,相似三角形的判定定理和性質(zhì)定理可能多次用到3.【xx高考湖北,理16】在直角坐標(biāo)系中,以O(shè)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系. 已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程為 ( 為參數(shù)) ,與C相交于兩點(diǎn),則 .【答案】由兩點(diǎn)間的距離公式得.【考點(diǎn)定位】極坐標(biāo)方程、參數(shù)方程與普通方程的轉(zhuǎn)化,兩點(diǎn)間的距離.【名師點(diǎn)睛】化參數(shù)方程為普通方程時(shí),未注意到普通方程與參數(shù)方程的等價(jià)性而出錯(cuò).4.【xx高考重慶,理14】如圖,圓O的弦AB,CD相交于點(diǎn)E,過(guò)點(diǎn)A作圓O的切線與DC的延長(zhǎng)線交于點(diǎn)P,若PA=6,AE=9,PC=3,CE:ED=2:1,則BE=_.【答案】2【解析】首先由切割線定理得,因此,又,因此,再相交弦定理有,所以.【考點(diǎn)定位】相交弦定理,切割線定理.【名師點(diǎn)晴】平面幾何問(wèn)題主要涉及三角形全等,三角形相似,四點(diǎn)共圓,圓中的有關(guān)比例線段(相關(guān)定理)等知識(shí),本題中有圓的切線,圓的割線,圓的相交弦,由圓的切割線定理和相交弦定理就可以得到題中有關(guān)線段的關(guān)系5【xx高考重慶,理15】已知直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,曲線C的極坐標(biāo)方程為,則直線l與曲線C的交點(diǎn)的極坐標(biāo)為_(kāi).【答案】【解析】直線的普通方程為,由得,直角坐標(biāo)方程為,把代入雙曲線方程解得,因此交點(diǎn).為,其極坐標(biāo)為.【考點(diǎn)定位】參數(shù)方程與普通方程的互化,極坐標(biāo)方程與直角坐標(biāo)方程的互化.【名師點(diǎn)晴】參數(shù)方程主要通過(guò)代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過(guò)選取相應(yīng)的參數(shù)可以把普通方程化為參數(shù)方程,利用關(guān)系式,等可以把極坐標(biāo)方程與直角坐標(biāo)方程互化,本題這類問(wèn)題一般我們可以先把曲線方程化為直角坐標(biāo)方程,用直角坐標(biāo)方程解決相應(yīng)問(wèn)題6【xx高考重慶,理16】若函數(shù)的最小值為5,則實(shí)數(shù)a=_.【答案】或【解析】由絕對(duì)值的性質(zhì)知在或時(shí)可能取得最小值,若,或,經(jīng)檢驗(yàn)均不合;若,則,或,經(jīng)檢驗(yàn)合題意,因此或.【考點(diǎn)定位】絕對(duì)值的性質(zhì),分段函數(shù).【名師點(diǎn)晴】與絕對(duì)值有關(guān)的問(wèn)題,我們可以根據(jù)絕對(duì)值的定義去掉絕對(duì)值符號(hào),把問(wèn)題轉(zhuǎn)化為不含絕對(duì)值的式子(函數(shù)、不等式等),本題中可利用絕對(duì)值定義把函數(shù)化為分段函數(shù),再利用函數(shù)的單調(diào)性求得函數(shù)的最小值,令此最小值為5,求得的值7.【xx高考廣東,理14】(坐標(biāo)系與參數(shù)方程選做題)已知直線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為 ,則點(diǎn)到直線的距離為 .【答案】【考點(diǎn)定位】極坐標(biāo)方程化為普通方程,極坐標(biāo)化平面直角坐標(biāo),點(diǎn)到直線的距離,轉(zhuǎn)化與化歸思想【名師點(diǎn)睛】本題主要考查正弦兩角差公式,極坐標(biāo)方程化為普通方程,極坐標(biāo)化平面直角坐標(biāo),點(diǎn)到直線的距離,轉(zhuǎn)化與化歸思想的應(yīng)用和運(yùn)算求解能力,屬于容易題,解答此題在于準(zhǔn)確把極坐標(biāo)問(wèn)題轉(zhuǎn)化為平面直角坐標(biāo)問(wèn)題,利用平面幾何點(diǎn)到直線的公式求解8. 【xx高考廣東,理15】(幾何證明選講選作題)如圖1,已知是圓的直徑,是圓的切線,切點(diǎn)為,過(guò)圓心做的平行線,分別交和于點(diǎn)和點(diǎn),則 .ABCDEOP圖1【答案】【解析】如下圖所示,連接,因?yàn)?,又,所以,又為線段的中點(diǎn),所以,在中,由直角三角形的射影定理可得即,故應(yīng)填入ABCDEOP【考點(diǎn)定位】直線與圓的位置關(guān)系,直角三角形的射影定理【名師點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系,直角三角形的射影定理運(yùn)用,屬于中檔題,解答平面幾何問(wèn)題關(guān)鍵在于認(rèn)真審題分析圖形中的線段關(guān)系,適當(dāng)作出輔助線段,此題連接,則容易得到,并利用直角三角形的射影定理求得線段的值9.【xx高考天津,理5】如圖,在圓 中, 是弦 的三等分點(diǎn),弦 分別經(jīng)過(guò)點(diǎn) .若 ,則線段 的長(zhǎng)為( )(A) (B)3 (C) (D) 【答案】A【解析】由相交弦定理可知,又因?yàn)槭窍业娜确贮c(diǎn),所以,所以,故選A.【考點(diǎn)定位】相交弦定理.【名師點(diǎn)睛】本題主要考查相交弦定理、數(shù)形結(jié)合思想、數(shù)學(xué)計(jì)算能力.應(yīng)用相交弦定理及,得到相應(yīng)線段的關(guān)系:,再利用線段三等分析點(diǎn)的性質(zhì),結(jié)合圖形,進(jìn)行適當(dāng)?shù)霓D(zhuǎn)化,進(jìn)行運(yùn)算,體現(xiàn)數(shù)學(xué)基本思想:數(shù)形結(jié)合.是基礎(chǔ)題.10.【xx高考安徽,理12】在極坐標(biāo)中,圓上的點(diǎn)到直線距離的最大值是 .【答案】【考點(diǎn)定位】1.極坐標(biāo)方程與普通方程的轉(zhuǎn)化;2.圓上的點(diǎn)到直線的距離.【名師點(diǎn)睛】對(duì)于極坐標(biāo)與參數(shù)方程的問(wèn)題,考生要把握好如何將極坐標(biāo)方程轉(zhuǎn)化成普通方程,抓住核心:,普通方程轉(zhuǎn)化成極坐標(biāo)方程,抓住核心:.圓上的點(diǎn)到直線的距離最大值或最小值,要考慮到圓的半徑加上(或減去)圓心到直線的距離.11.【xx高考新課標(biāo)2,理22】選修41:幾何證明選講 如圖,為等腰三角形內(nèi)一點(diǎn),圓與的底邊交于、兩點(diǎn)與底邊上的高交于點(diǎn),與、分別相切于、兩點(diǎn)GAEFONDBCM ()證明:;() 若等于的半徑,且,求四邊形的面積【答案】()詳見(jiàn)解析;()【解析】()由于是等腰三角形,所以是的平分線又因?yàn)榉謩e與、相切于、兩點(diǎn),所以,故從而()由()知,,,故是的垂直平分線,又是的弦,所以在上連接,則由等于的半徑得,所以所以和都是等邊三角形因?yàn)椋?,因?yàn)?,所以于是,所以四邊形的面積【考點(diǎn)定位】1等腰三角形的性質(zhì);2、圓的切線長(zhǎng)定理;3、圓的切線的性質(zhì)【名師點(diǎn)睛】平面幾何中平行關(guān)系的證明往往有三種方法:由垂直關(guān)系得出;由角的關(guān)系得出;由平行關(guān)系的傳遞性得出;除了用常規(guī)方法求面積外,通過(guò)割補(bǔ)法,將所求面積轉(zhuǎn)化為易求面積的兩個(gè)圖形的和或者差更簡(jiǎn)潔【xx高考上海,理3】若線性方程組的增廣矩陣為、解為,則 【答案】【解析】由題意得:【考點(diǎn)定位】線性方程組的增廣矩陣【名師點(diǎn)睛】線性方程組的增廣矩陣是線性方程組另一種表示形式,明確其對(duì)應(yīng)關(guān)系即可解決相應(yīng)問(wèn)題.即對(duì)應(yīng)增廣矩陣為12.【xx高考新課標(biāo)2,理23】選修4-4:坐標(biāo)系與參數(shù)方程在直角坐標(biāo)系中,曲線(為參數(shù),),其中,在以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線().求與交點(diǎn)的直角坐標(biāo);().若與相交于點(diǎn),與相交于點(diǎn),求的最大值【答案】()和;()()曲線的極坐標(biāo)方程為,其中因此得到極坐標(biāo)為,的極坐標(biāo)為所以,當(dāng)時(shí),取得最大值,最大值為【考點(diǎn)定位】1、極坐標(biāo)方程和直角坐標(biāo)方程的轉(zhuǎn)化;2、三角函數(shù)的最大值【名師點(diǎn)睛】()將曲線與的極坐標(biāo)方程化為直角坐標(biāo)方程,聯(lián)立求交點(diǎn),得其交點(diǎn)的直角坐標(biāo),也可以直接聯(lián)立極坐標(biāo)方程,求得交點(diǎn)的極坐標(biāo),再化為直角坐標(biāo);()分別聯(lián)立與和與的極坐標(biāo)方程,求得的極坐標(biāo),由極徑的概念將表示,轉(zhuǎn)化為三角函數(shù)的最大值問(wèn)題處理,高考試卷對(duì)參數(shù)方程中參數(shù)的幾何意義和極坐標(biāo)方程中極徑和極角的概念考查加大了力度,復(fù)習(xí)時(shí)要克服把所有問(wèn)題直角坐標(biāo)化的誤區(qū)13【xx高考新課標(biāo)2,理24】(本小題滿分10分)選修4-5不等式選講設(shè)均為正數(shù),且,證明:()若,則;()是的充要條件【答案】()詳見(jiàn)解析;()詳見(jiàn)解析【解析】()因?yàn)椋深}設(shè),得因此()()若,則即因?yàn)椋?,由()得()若,則,即因?yàn)?,所以,于是因此,綜上,是的充要條件【考點(diǎn)定位】不等式證明【名師點(diǎn)睛】()要證明,只需證明,展開(kāi)結(jié)合已知條件易證;()充要條件的證明需要分為兩步,即充分條件的證明和必要條件的證明證明的關(guān)鍵是尋找條件和結(jié)論以及它們和已知之間的聯(lián)系15. 【xx江蘇高考,21】A(選修41:幾何證明選講) 如圖,在中,的外接圓圓O的弦交于點(diǎn)D求證:ABCEDO(第21A題)【答案】詳見(jiàn)解析【解析】試題分析:利用等弦對(duì)等角,同弧對(duì)等角,得到,又公共角,所以兩三角形相似試題解析:因?yàn)?,所以又因?yàn)?,所以,又為公共角,可知【考點(diǎn)定位】相似三角形【名師點(diǎn)晴】1.判定兩個(gè)三角形相似的常規(guī)思路(1)先找兩對(duì)對(duì)應(yīng)角相等;(2)若只能找到一對(duì)對(duì)應(yīng)角相等,則判斷相等的角的兩夾邊是否對(duì)應(yīng)成比例;(3)若找不到角相等,就判斷三邊是否對(duì)應(yīng)成比例,否則考慮平行線分線段成比例定理及相似三角形的“傳遞性” 2.借助圖形判斷三角形相似的方法(1)有平行線的可圍繞平行線找相似;(2)有公共角或相等角的可圍繞角做文章,再找其他相等的角或?qū)?yīng)邊成比例;(3)有公共邊的可將圖形旋轉(zhuǎn),觀察其特征,找出相等的角或成比例的對(duì)應(yīng)邊21.B(選修42:矩陣與變換)已知,向量是矩陣的屬性特征值的一個(gè)特征向量,矩陣以及它的另一個(gè)特征值.【答案】,另一個(gè)特征值為從而矩陣的特征多項(xiàng)式,所以矩陣的另一個(gè)特征值為【考點(diǎn)定位】矩陣運(yùn)算,特征值與特征向量【名師點(diǎn)晴】求特征值和特征向量的方法(1)矩陣的特征值滿足,屬于的特征向量滿足.(2)求特征向量和特征值的步驟:解得特征值;解,取x1或y1,寫出相應(yīng)的向量21. C(選修44:坐標(biāo)系與參數(shù)方程)已知圓C的極坐標(biāo)方程為,求圓C的半徑.【答案】【解析】試題分析:先根據(jù)將圓C的極坐標(biāo)方程化成直角坐標(biāo)方程,再根據(jù)圓的標(biāo)準(zhǔn)方程得到其半徑.試題解析:以極坐標(biāo)系的極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),以極軸為軸的正半軸,建立直角坐標(biāo)系圓的極坐標(biāo)方程為,化簡(jiǎn),得則圓的直角坐標(biāo)方程為,即,所以圓的半徑為【考點(diǎn)定位】圓的極坐標(biāo)方程,極坐標(biāo)與之間坐標(biāo)互化【名師點(diǎn)晴】1.運(yùn)用互化公式:將極坐標(biāo)化為直角坐標(biāo);2.直角坐標(biāo)方程與極坐標(biāo)方程的互化,關(guān)鍵要掌握好互化公式,研究極坐標(biāo)系下圖形的性質(zhì),可轉(zhuǎn)化直角坐標(biāo)系的情境進(jìn)行21.D(選修45:不等式選講)解不等式【答案】【解析】試題分析:根據(jù)絕對(duì)值定義將不等式化為兩個(gè)不等式組的并集,分別求解即可試題解析:原不等式可化為或解得或綜上,原不等式的解集是【考點(diǎn)定位】含絕對(duì)值不等式的解法【名師點(diǎn)晴】利用絕對(duì)值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;利用“零點(diǎn)分段法”求解,體現(xiàn)了分類討論的思想;通過(guò)構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想16.【xx高考福建,理21】選修4-2:矩陣與變換已知矩陣()求A的逆矩陣;()求矩陣C,使得AC=B.【答案】(); ()【考點(diǎn)定位】矩陣和逆矩陣【名師點(diǎn)睛】本題考查逆矩陣和逆矩陣的性質(zhì),是通過(guò)伴隨矩陣和矩陣的乘法求解,屬于基礎(chǔ)題,注意運(yùn)算的準(zhǔn)確性17.【xx高考福建,理21】選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,圓C的參數(shù)方程為.在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線l的方程為()求圓C的普通方程及直線l的直角坐標(biāo)方程;()設(shè)圓心C到直線l的距離等于2,求m的值【答案】() ,;() 【解析】()消去參數(shù)t,得到圓的普通方程為,由,得,所以直線l的直角坐標(biāo)方程為.()依題意,圓心C到直線l的距離等于2,即解得【考點(diǎn)定位】1、參數(shù)方程和普通方程的互化;2、極坐標(biāo)方程和直角坐標(biāo)方程的互化;3、點(diǎn)到直線距離公式【名師點(diǎn)睛】本題考查圓的參數(shù)方程和普通方程的轉(zhuǎn)化、直線極坐標(biāo)方程和直角坐標(biāo)方程的轉(zhuǎn)化以及點(diǎn)到直線距離公式,消去參數(shù)方程中的參數(shù),就可把參數(shù)方程化為普通方程,消去參數(shù)的常用方法有:代入消元法;加減消元法;乘除消元法;三角恒等式消元法,極坐標(biāo)方程化為直角坐標(biāo)方程,只要將和換成和即可18.【xx高考福建,理21】選修4-5:不等式選講已知,函數(shù)的最小值為4()求的值;()求的最小值【答案】() ;()【解析】()因?yàn)椋?dāng)且僅當(dāng)時(shí),等號(hào)成立,又,所以,所以的最小值為,所以()由(1)知,由柯西不等式得,即.當(dāng)且僅當(dāng),即時(shí),等號(hào)成立所以的最小值為.【考點(diǎn)定位】1、絕對(duì)值三角不等式;2、柯西不等式【名師點(diǎn)睛】當(dāng)?shù)南禂?shù)相等或相反時(shí),可以利用絕對(duì)值不等式求解析式形如的函數(shù)的最小值,以及解析式形如的函數(shù)的最小值和最大值,否則去絕對(duì)號(hào),利用分段函數(shù)的圖象求最值利用柯西不等式求最值時(shí),要注意其公式的特征,以出現(xiàn)定值為目標(biāo)19【xx高考陜西,理22】(本小題滿分10分)選修4-1:幾何證明選講如圖,切于點(diǎn),直線交于,兩點(diǎn),垂足為(I)證明:;(II)若,求的直徑【答案】(I)證明見(jiàn)解析;(II)又,所以,從而.又切圓于點(diǎn),得,所以.(II)由(I)知平分,則,又,從而,所以,所以.由切割線定理得,即,故,即圓的直徑為.考點(diǎn):1、直徑所對(duì)的圓周角;2、弦切角定理;3、切割線定理.【名師點(diǎn)晴】本題主要考查的是直徑所對(duì)的圓周角、弦切角定理和切割線定理,屬于容易題解題時(shí)一定要注意靈活運(yùn)用圓的性質(zhì),否則很容易出現(xiàn)錯(cuò)誤凡是題目中涉及長(zhǎng)度的,通常會(huì)使用到相似三角形、全等三角形、正弦定理、余弦定理等基礎(chǔ)知識(shí)20.【xx高考陜西,理23】選修4-4:坐標(biāo)系與參數(shù)方程在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù))以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,的極坐標(biāo)方程為(I)寫出的直角坐標(biāo)方程;(II)為直線上一動(dòng)點(diǎn),當(dāng)?shù)綀A心的距離最小時(shí),求的直角坐標(biāo)【答案】(I);(II)【解析】試題分析:(I)先將兩邊同乘以可得,再利用,可得的直角坐標(biāo)方程;(II)先設(shè)的坐標(biāo),則,再利用二次函數(shù)的性質(zhì)可得的最小值,進(jìn)而可得的直角坐標(biāo)試題解析:(I)由,得,從而有,所以.(II)設(shè),又,則,故當(dāng)時(shí),取最小值,此時(shí)點(diǎn)的直角坐標(biāo)為.考點(diǎn):1、極坐標(biāo)方程化為直角坐標(biāo)方程;2、參數(shù)的幾何意義;3、二次函數(shù)的性質(zhì).【名師點(diǎn)晴】本題主要考查的是極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)的幾何意義和二次函數(shù)的性質(zhì),屬于容易題解決此類問(wèn)題的關(guān)鍵是極坐標(biāo)方程或參數(shù)方程轉(zhuǎn)化為平面直角坐標(biāo)系方程,并把幾何問(wèn)題代數(shù)化21【xx高考陜西,理24】(本小題滿分10分)選修4-5:不等式選講已知關(guān)于的不等式的解集為(I)求實(shí)數(shù),的值;(II)求的最大值【答案】(I),;(II)故.考點(diǎn):1、絕對(duì)值不等式;2、柯西不等式.【名師點(diǎn)晴】本題主要考查的是絕對(duì)值不等式和柯西不等式,屬于容易題解題時(shí)一定要注意不等式與方程的區(qū)別,否則很容易出現(xiàn)錯(cuò)誤零點(diǎn)分段法解絕對(duì)值不等式的步驟:求零點(diǎn);劃區(qū)間,去絕對(duì)值號(hào);分別解去掉絕對(duì)值的不等式;取每段結(jié)果的并集,注意在分段時(shí)不要遺漏區(qū)間的端點(diǎn)值用柯西不等式證明或求最值要注意:所給不等式的形式是否與柯西不等式的興致一致,若不一致,需要將所給式子變形;等號(hào)成立的條件22.【xx高考新課標(biāo)1,理22】選修4-1:幾何證明選講如圖,AB是O的直徑,AC是O的切線,BC交O于E. ()若D為AC的中點(diǎn),證明:DE是O的切線;()若,求ACB的大小.【答案】()見(jiàn)解析()60【解析】試題分析:()由圓的切線性質(zhì)及圓周角定理知,AEBC,ACAB,由直角三角形中線性質(zhì)知DE=DC,OE=OB,利用等量代換可證DEC+OEB=90,即OED=90,所以DE是圓O的切線;()設(shè)CE=1,由得,AB=,設(shè)AE=,由勾股定理得,由直角三角形射影定理可得,列出關(guān)于的方程,解出,即可求出ACB的大小.試題解析:()連結(jié)AE,由已知得,AEBC,ACAB,在RtAEC中,由已知得DE=DC,DEC=DCE,連結(jié)OE,OBE=OEB,ACB+ABC=90,DEC+OEB=90,OED=90,DE是圓O的切線. 5分()設(shè)CE=1,AE=,由已知得AB=, 由射影定理可得,解得=,ACB=60. 10分【考點(diǎn)定位】圓的切線判定與性質(zhì);圓周角定理;直角三角形射影定理【名師點(diǎn)睛】在解有關(guān)切線的問(wèn)題時(shí),要從以下幾個(gè)方面進(jìn)行思考:見(jiàn)到切線,切點(diǎn)與圓心的連線垂直于切線;過(guò)切點(diǎn)有弦,應(yīng)想到弦切角定理;若切線與一條割線相交,應(yīng)想到切割線定理;若要證明某條直線是圓的切線,則證明直線與圓的交點(diǎn)與圓心的連線與該直線垂直.23.【xx高考新課標(biāo)1,理23】選修4-4:坐標(biāo)系與參數(shù)方程在直角坐標(biāo)系中,直線:=2,圓:,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.()求,的極坐標(biāo)方程;()若直線的極坐標(biāo)方程為,設(shè)與的交點(diǎn)為, ,求的面積. 【答案】(),()【解析】試題分析:()用直角坐標(biāo)方程與極坐標(biāo)互化公式即可求得,的極坐標(biāo)方程;()將將代入即可求出|MN|,利用三角形面積公式即可求出的面積.【考點(diǎn)定位】直角坐標(biāo)方程與極坐標(biāo)互化;直線與圓的位置關(guān)系【名師點(diǎn)睛】對(duì)直角坐標(biāo)方程與極坐標(biāo)方程的互化問(wèn)題,要熟記互化公式,另外要注意互化時(shí)要將極坐標(biāo)方程作適當(dāng)轉(zhuǎn)化,若是和角,常用兩角和與差的三角公式展開(kāi),化為可以公式形式,有時(shí)為了出現(xiàn)公式形式,兩邊可以同乘以,對(duì)直線與圓或圓與圓的位置關(guān)系,常化為直角坐標(biāo)方程,再解決.24.【xx高考新課標(biāo)1,理24】選修45:不等式選講已知函數(shù)=|x+1|-2|x-a|,a0.()當(dāng)a=1時(shí),求不等式f(x)1的解集;()若f(x)的圖像與x軸圍成的三角形面積大于6,求a的取值范圍.【答案】()()(2,+)【解析】()當(dāng)a=1時(shí),不等式f(x)1化為|x+1|-2|x-1|1,等價(jià)于或或,解得,所以不等式f(x)1的解集為. 5分()由題設(shè)可得, 所以函數(shù)的圖像與軸圍成的三角形的三個(gè)頂點(diǎn)分別為,所以ABC的面積為.由題設(shè)得6,解得.所以的取值范圍為(2,+). 10分【考點(diǎn)定位】含絕對(duì)值不等式解法;分段函數(shù);一元二次不等式解法【名師點(diǎn)睛】對(duì)含有兩個(gè)絕對(duì)值的不等式問(wèn)題,常用“零點(diǎn)分析法”去掉絕對(duì)值化為若干個(gè)不等式組問(wèn)題,原不等式的解集是這些不等式組解集的并集;對(duì)函數(shù)多個(gè)絕對(duì)值的函數(shù)問(wèn)題,常利用分類整合思想化為分段函數(shù)問(wèn)題,若絕對(duì)值中未知數(shù)的系數(shù)相同,常用絕對(duì)值不等式的性質(zhì)求最值,可減少計(jì)算.25.【xx高考湖南,理16】16.(1)如圖,在圓中,相交于點(diǎn)的兩弦,的中點(diǎn)分別是,直線與直線相交于點(diǎn),證明:(1);(2)【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.【解析】試題分析:(1)首先根據(jù)垂徑定理可得, ,再由四邊形的內(nèi)角和即可得證;(2)由(1)中的結(jié)論可得,四點(diǎn)共圓,再由割線定理即得試題解析:(1)如圖所示, ,分別是弦,的中點(diǎn),即, ,又四邊形的內(nèi)角和等于,故;(2)由(I)知,四點(diǎn)共圓,故由割線定理即得【考點(diǎn)定位】1.垂徑定理;2.四點(diǎn)共圓;3.割線定理.【名師點(diǎn)睛】本題主要考查了圓的基本性質(zhì)等知識(shí)點(diǎn),屬于容易題,平面幾何中圓的有關(guān)問(wèn)題是高考考查的熱點(diǎn),解題時(shí)要充分利用圓的性質(zhì)和切割線定理,相似三角形,勾股定理等其他平面幾何知識(shí)點(diǎn)的交匯.()已知直線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1) 將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;(2) 設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線C 的交點(diǎn)為,求的值.【答案】(1);(2).的兩個(gè)實(shí)數(shù)根分別為,則由參數(shù)的幾何意義即知,.【考點(diǎn)定位】1.極坐標(biāo)方程與直角坐標(biāo)方程的互相轉(zhuǎn)化;2.直線與圓的位置關(guān)系.【名師點(diǎn)睛】本題主要考查了極坐標(biāo)方程與直角坐標(biāo)方程的互相轉(zhuǎn)化以及直線與圓的位置關(guān)系,屬于容易題,在方程的轉(zhuǎn)化時(shí),只要利用,進(jìn)行等價(jià)變形即可,考查極坐標(biāo)方程與參數(shù)方程,實(shí)為考查直線與圓的相交問(wèn)題,實(shí)際上為解析幾何問(wèn)題,解析幾何中常用的思想,如聯(lián)立方程組等,在極坐標(biāo)與參數(shù)方程中同樣適用.()設(shè),且.(1);(2)與不可能同時(shí)成立.【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.【解析】試題分析:(1)將已知條件中的式子可等價(jià)變形為,再由基本不等式即可得證;(2)利用反證法,假設(shè)假設(shè)與同時(shí)成立,可求得,從而與矛盾,即可得證試題解析:由,得,(1)由基本不等式及,有,即;(2)假設(shè)與同時(shí)成立,則由及得,同理,從而,這與矛盾,故與不可能成立.【考點(diǎn)定位】1.基本不等式;2.一元二次不等式;3.反證法.【名師點(diǎn)睛】本題主要考查了不等式的證明與反證法等知識(shí)點(diǎn),屬于中檔題,第一小問(wèn)需將條件中的式子作等價(jià)變形,再利用基本不等式即可求解,第二小問(wèn)從問(wèn)題不可能同時(shí)成立,可以考慮采用反證法證明,否定結(jié)論,從而推出矛盾,反證法作為一個(gè)相對(duì)冷門的數(shù)學(xué)方法,在后續(xù)復(fù)習(xí)時(shí)亦應(yīng)予以關(guān)注.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)試題分項(xiàng)版解析 專題16 選修部分 理含解析 2019 2020 年高 數(shù)學(xué)試題 分項(xiàng)版 解析 專題 16 選修 部分
鏈接地址:http://m.appdesigncorp.com/p-3264275.html