高考數(shù)學一輪復習 第九章 平面解析幾何 9.2 兩條直線的位置關(guān)系課件 理.ppt
《高考數(shù)學一輪復習 第九章 平面解析幾何 9.2 兩條直線的位置關(guān)系課件 理.ppt》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學一輪復習 第九章 平面解析幾何 9.2 兩條直線的位置關(guān)系課件 理.ppt(91頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第九章 平面解析幾何,§9.2 兩條直線的位置關(guān)系,,,內(nèi)容索引,,,,基礎(chǔ)知識 自主學習,題型分類 深度剖析,思想與方法系列,思想方法 感悟提高,練出高分,,,基礎(chǔ)知識 自主學習,1.兩條直線的位置關(guān)系 (1)兩條直線平行與垂直 ①兩條直線平行: (ⅰ)對于兩條不重合的直線l1、l2,若其斜率分別為k1、k2,則有l(wèi)1∥l2? (k1,k2均存在). (ⅱ)當直線l1、l2不重合且斜率都不存在時,l1∥l2.,k1=k2,,知識梳理,1,,答案,②兩條直線垂直: (ⅰ)如果兩條直線l1、l2的斜率存在,設(shè)為k1、k2,則有l(wèi)1⊥l2?__________ (k1,k2均存在). (ⅱ)當其中一條直線的斜率不存在,而另一條的斜率為0時,l1⊥l2. (2)兩條直線的交點 直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,則l1與l2的交點坐標就是 方程組 的解.,,k1·k2=-1,,答案,2.幾種距離 (1)兩點P1(x1,y1),P2(x2,y2)之間的距離|P1P2|= . (2)點P0(x0,y0)到直線l:Ax+By+C=0的距離d= . (3)兩條平行線Ax+By+C1=0與Ax+By+C2=0(其中C1≠C2)間的距離 d= .,,答案,1.一般地,與直線Ax+By+C=0平行的直線方程可設(shè)為Ax+By+m=0;與之垂直的直線方程可設(shè)為Bx-Ay+n=0. 2.過直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0的交點的直線系方程為A1x+B1y+C1+λ(A2x+B2y+C2)=0 (λ∈R),但不包括l2. 3.點到直線與兩平行線間的距離的使用條件: (1)求點到直線的距離時,應先化直線方程為一般式. (2)求兩平行線之間的距離時,應先將方程化為一般式且x,y的系數(shù)對應相等.,知識拓展,判斷下面結(jié)論是否正確(請在括號中打“√”或“×”) (1)當直線l1和l2斜率都存在時,一定有k1=k2?l1∥l2.( ) (2)如果兩條直線l1與l2垂直,則它們的斜率之積一定等于-1.( ) (3)已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1、B1、C1、A2、B2、C2為常數(shù)),若直線l1⊥l2,則A1A2+B1B2=0.( ),×,×,√,,答案,思考辨析,(4)點P(x0,y0)到直線y=kx+b的距離為 .( ) (5)直線外一點與直線上一點的距離的最小值就是點到直線的距離.( ) (6)若點A,B關(guān)于直線l:y=kx+b(k≠0)對稱,則直線AB的斜率等于- ,且線段AB的中點在直線l上.( ),×,√,√,,答案,1.設(shè)a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的__________條件. 解析 (1)充分性:當a=1時, 直線l1:x+2y-1=0與直線l2:x+2y+4=0平行; (2)必要性:當直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行時有a=-2或1. 所以“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的充分不必要條件.,充分不必要,,考點自測,2,,解析答案,1,2,3,4,5,2.(教材改編)已知點(a,2)(a0)到直線l:x-y+3=0的距離為1,則a= .,,解析答案,1,2,3,4,5,3.已知直線l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8平行,則實數(shù)m的值為________.,得m=-1或-7.,,解析答案,1,2,3,4,5,-7,4.(2014·福建改編)已知直線l過圓x2+(y-3)2=4的圓心,且與直線x+y+1=0垂直,則l的方程是___________. 解析 圓x2+(y-3)2=4的圓心為點(0,3), 又因為直線l與直線x+y+1=0垂直, 所以直線l的斜率k=1. 由點斜式得直線l:y-3=x-0,化簡得x-y+3=0.,x-y+3=0,,解析答案,1,2,3,4,5,5.(教材改編)若直線(3a+2)x+(1-4a)y+8=0與(5a-2)x+(a+4)y-7=0垂直,則a=________. 解析 由兩直線垂直的充要條件,得(3a+2)(5a-2)+(1-4a)(a+4)=0,解得a=0或a=1.,0或1,,解析答案,1,2,3,4,5,返回,,題型分類 深度剖析,例1 (1)已知兩條直線l1:(a-1)·x+2y+1=0,l2:x+ay+3=0平行,則a=________. 解析 若a=0,兩直線方程為-x+2y+1=0和x=-3,此時兩直線相交,不平行,所以a≠0.,解得a=-1或a=2.,-1或2,,,題型一 兩條直線的平行與垂直,,解析答案,(2)已知兩直線方程分別為l1:x+y=1,l2:ax+2y=0,若l1⊥l2,則a=________. 解析 方法一 ∵l1⊥l2, ∴k1k2=-1,,解得a=-2. 方法二 ∵l1⊥l2, ∴a+2=0,a=-2.,-2,,解析答案,思維升華,,思維升華,(1)當直線方程中存在字母參數(shù)時,不僅要考慮到斜率存在的一般情況,也要考慮到斜率不存在的特殊情況.同時還要注意x、y的系數(shù)不能同時為零這一隱含條件. (2)在判斷兩直線平行、垂直時,也可直接利用直線方程的系數(shù)間的關(guān)系得出結(jié)論.,已知兩直線l1:x+ysin α-1=0和l2:2x·sin α+y+1=0,求α的值,使得: (1)l1∥l2;,跟蹤訓練1,,解析答案,解 方法一 當sin α=0時,直線l1的斜率不存在,l2的斜率為0,顯然l1不平行于l2.,,解析答案,方法二 由A1B2-A2B1=0,得2sin2α-1=0,,又B1C2-B2C1≠0,所以1+sin α≠0,即sin α≠-1.,(2)l1⊥l2. 解 因為A1A2+B1B2=0是l1⊥l2的充要條件, 所以2sin α+sin α=0,即sin α=0,所以α=kπ,k∈Z. 故當α=kπ,k∈Z時,l1⊥l2.,,解析答案,,,,題型二 兩條直線的交點與距離問題,,解析答案,又∵交點位于第一象限,,,解析答案,方法二 如圖,已知直線,,解析答案,而直線方程y=kx+2k+1可變形為y-1=k(x+2),表示這是一條過定點P(-2,1),斜率為k的動直線. ∵兩直線的交點在第一象限, ∴兩直線的交點必在線段AB上(不包括端點), ∴動直線的斜率k需滿足kPA<k<kPB.,(2)直線l過點P(-1,2)且到點A(2,3)和點B(-4,5)的距離相等,則直線l的方程為__________________________.,,解析答案,解析 方法一 當直線l的斜率存在時,設(shè)直線l的方程為 y-2=k(x+1),即kx-y+k+2=0.,即|3k-1|=|-3k-3|,,,解析答案,思維升華,,即x+3y-5=0. 當l過AB中點時,AB的中點為(-1,4). ∴直線l的方程為x=-1. 故所求直線l的方程為x+3y-5=0或x=-1.,答案 x+3y-5=0或x=-1,即x+3y-5=0. 當直線l的斜率不存在時,直線l的方程為x=-1,也符合題意.,思維升華,,思維升華,(1)求過兩直線交點的直線方程的方法: 求過兩直線交點的直線方程,先解方程組求出兩直線的交點坐標,再結(jié)合其他條件寫出直線方程. (2)利用距離公式應注意:①點P(x0,y0)到直線x=a的距離d=|x0-a|,到直線y=b的距離d=|y0-b|;②兩平行線間的距離公式要把兩直線方程中x,y的系數(shù)化為相等.,(1)如圖,設(shè)一直線過點(-1,1),它被兩平行直線l1:x+2y-1=0,l2:x+2y-3=0所截的線段的中點在直線l3:x-y-1=0上,求其方程.,解 與l1、l2平行且距離相等的直線方程為x+2y-2=0. 設(shè)所求直線方程為(x+2y-2)+λ(x-y-1)=0, 即(1+λ)x+(2-λ)y-2-λ=0.又直線過(-1,1), ∴(1+λ)(-1)+(2-λ)·1-2-λ=0.,跟蹤訓練2,,解析答案,(2)正方形的中心為點C(-1,0),一條邊所在的直線方程是x+3y-5=0,求其他三邊所在直線的方程.,,解析答案,設(shè)與x+3y-5=0平行的一邊所在直線的方程是x+3y+m=0(m≠-5),,解得m=-5(舍去)或m=7, 所以與x+3y-5=0平行的邊所在直線的方程是x+3y+7=0.,,解析答案,設(shè)與x+3y-5=0垂直的邊所在直線的方程是3x-y+n=0,,解得n=-3或n=9, 所以與x+3y-5=0垂直的兩邊所在直線的方程分別是3x-y-3=0和3x-y+9=0.,命題點1 點關(guān)于點中心對稱,例3 過點P(0,1)作直線l,使它被直線l1:2x+y-8=0和l2:x-3y+10=0截得的線段被點P平分,則直線l的方程為________________. 解析 設(shè)l1與l的交點為A(a,8-2a), 則由題意知,點A關(guān)于點P的對稱點B(-a,2a-6)在l2上, 代入l2的方程得-a-3(2a-6)+10=0, 解得a=4, 即點A(4,0)在直線l上, 所以直線l的方程為x+4y-4=0.,x+4y-4=0,,,題型三 對稱問題,,解析答案,命題點2 點關(guān)于直線對稱,例4 已知直線l:2x-3y+1=0,點A(-1,-2),則點A關(guān)于直線l的對稱點A′的坐標為____________.,,解析答案,命題點3 直線關(guān)于直線的對稱問題,例5 已知直線l:2x-3y+1=0,求直線m:3x-2y-6=0關(guān)于直線l的對稱直線m′的方程.,,解析答案,思維升華,解 在直線m上任取一點,如M(2,0), 則M(2,0)關(guān)于直線l的對稱點M′必在直線m′上.,,解析答案,思維升華,設(shè)直線m與直線l的交點為N,,又∵m′經(jīng)過點N(4,3). ∴由兩點式得直線m′的方程為9x-46y+102=0.,,思維升華,,解決對稱問題的方法 (1)中心對稱,②直線關(guān)于點的對稱可轉(zhuǎn)化為點關(guān)于點的對稱問題來解決.,思維升華,,(2)軸對稱,②直線關(guān)于直線的對稱可轉(zhuǎn)化為點關(guān)于直線的對稱問題來解決.,在等腰直角三角形ABC中,AB=AC=4,點P是邊AB上異于A,B的一點,光線從點P出發(fā),經(jīng)BC,CA發(fā)射后又回到原點P(如圖).若光線QR經(jīng)過△ABC的重心,則AP=________.,跟蹤訓練3,,解析答案,返回,解析 建立如圖所示的坐標系:,可得B(4,0),C(0,4),故直線BC的方程為x+y=4,,設(shè)P(a,0),其中0a4,,,解析答案,,解析答案,代入化簡可得3a2-4a=0,,,返回,,思想與方法系列,一、平行直線系 由于兩直線平行,它們的斜率相等或它們的斜率都不存在,因此兩直線平行時,它們的一次項系數(shù)與常數(shù)項有必然的聯(lián)系.,典例 求與直線3x+4y+1=0平行且過點(1,2)的直線l的方程.,思維點撥 因為所求直線與3x+4y+1=0平行,因此,可設(shè)該直線方程為3x+4y+c=0(c≠1).,18.妙用直線系求直線方程,,思想與方法系列,,解析答案,思維點撥,溫馨提醒,規(guī)范解答 解 依題意,設(shè)所求直線方程為3x+4y+c=0(c≠1), 又因為直線過點(1,2), 所以3×1+4×2+c=0,解得c=-11. 因此,所求直線方程為3x+4y-11=0.,,溫馨提醒,溫馨提醒,,與直線Ax+By+C=0平行的直線系方程為Ax+By+C1=0 (C1≠C),再由其他條件求C1.,二、垂直直線系 由于直線A1x+B1y+C1=0與A2x+B2y+C2=0垂直的充要條件為A1A2+B1B2=0.因此,當兩直線垂直時,它們的一次項系數(shù)有必要的關(guān)系,可以考慮用直線系方程求解. 典例 求經(jīng)過A(2,1),且與直線2x+y-10=0垂直的直線l的方程. 思維點撥 依據(jù)兩直線垂直的特征設(shè)出方程,再由待定系數(shù)法求解.,,解析答案,思維點撥,溫馨提醒,規(guī)范解答 解 因為所求直線與直線2x+y-10=0垂直,所以設(shè)該直線方程為x-2y+C1=0,又直線過點(2,1),所以有2-2×1+C1=0,解得C1=0,即所求直線方程為x-2y=0.,,溫馨提醒,溫馨提醒,,與直線Ax+By+C=0垂直的直線系方程為Bx-Ay+C1=0,再由其他條件求出C1.,三、過直線交點的直線系 典例 求經(jīng)過兩直線l1:x-2y+4=0和l2:x+y-2=0的交點P,且與直線l3:3x-4y+5=0垂直的直線l的方程. 思維點撥 可分別求出直線l1與l2的交點及直線l的斜率k,直接寫出方程;也可以利用過交點的直線系方程設(shè)直線方程,再用待定系數(shù)法求解.,,解析答案,思維點撥,溫馨提醒,返回,規(guī)范解答,即4x+3y-6=0. 方法二 設(shè)直線l的方程為x-2y+4+λ(x+y-2)=0, 即(1+λ)x+(λ-2)y+4-2λ=0. 又∵l⊥l3,∴3×(1+λ)+(-4)×(λ-2)=0, 解得λ=11. ∴直線l的方程為4x+3y-6=0.,,溫馨提醒,,返回,溫馨提醒,,本題方法一采用常規(guī)方法,先通過方程組求出兩直線交點,再根據(jù)垂直關(guān)系求出斜率,由于交點在y軸上,故采用斜截式求解;方法二則采用了過兩直線A1x+B1y+C1=0與A2x+B2y+C2=0的交點的直線系方程:A1x+B1y+C1+λ(A2x+B2y+C2)=0,直接設(shè)出過兩直線交點的方程,再根據(jù)垂直條件用待定系數(shù)法求解.,,思想方法 感悟提高,1.兩直線的位置關(guān)系要考慮平行、垂直和重合.對于斜率都存在且不重合的兩條直線l1、l2,l1∥l2?k1=k2;l1⊥l2?k1·k2=-1.若有一條直線的斜率不存在,那么另一條直線的斜率一定要特別注意. 2.對稱問題一般是將線與線的對稱轉(zhuǎn)化為點與點的對稱.利用坐標轉(zhuǎn)移法.,方法與技巧,1.在判斷兩條直線的位置關(guān)系時,首先應分析直線的斜率是否存在.若兩條直線都有斜率,可根據(jù)判定定理判斷,若直線無斜率,要單獨考慮. 2.在運用兩平行直線間的距離公式d= 時,一定要注意將兩方程中x,y的系數(shù)化為相同的形式.,失誤與防范,,返回,,練出高分,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,,3,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,2.設(shè)a,b,c分別是△ABC中角A,B,C所對邊的邊長,則直線sin A·x-ay-c=0與bx+sin B·y+sin C=0的位置關(guān)系是________.,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,即直線sin A·x-ay-c=0與bx+sin B·y+sin C=0垂直.,方法二 由正弦定理有a=2Rsin A,b=2Rsin B(其中R為△ABC外接圓的半徑), 所以bsin A-asin B=2Rsin Bsin A-2Rsin Asin B=0, 所以直線sin A·x-ay-c=0與bx+sin B·y+sin C=0垂直. 答案 垂直,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,,二,,解析答案,4.若直線l1:y=k(x-4)與直線l2關(guān)于點(2,1)對稱,則直線l2經(jīng)過定點________. 解析 直線l1:y=k(x-4)經(jīng)過定點(4,0),其關(guān)于點(2,1)對稱的點為(0,2), 又直線l1:y=k(x-4)與直線l2關(guān)于點(2,1)對稱, 故直線l2經(jīng)過定點(0,2).,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,(0,2),,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,5.從點(2,3)射出的光線沿與向量a=(8,4)平行的直線射到y(tǒng)軸上,則反射光線所在的直線方程為____________.,其與y軸的交點坐標為(0,2), 又點(2,3)關(guān)于y軸的對稱點為(-2,3), 所以反射光線過點(-2,3)與(0,2), 由兩點式得直線方程為x+2y-4=0.,x+2y-4=0,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析 由題可知,集合M表示過點(2,3)且斜率為3的直線,但除去(2,3)點, 而集合N表示一條直線,,,7.已知兩直線l1:ax-by+4=0和l2:(a-1)x+y+b=0,若l1∥l2,且坐標原點到這兩條直線的距離相等,則a+b=________.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,,-1,1,,,解析答案,9.已知△ABC的頂點A(5,1),AB邊上的中線CM所在直線方程為2x-y-5=0,AC邊上的高BH所在直線方程為x-2y-5=0,求直線BC的方程.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,,解析答案,解 依題意知:kAC=-2,A(5,1), ∴l(xiāng)AC為2x+y-11=0,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,代入2x-y-5=0,得2x0-y0-1=0,,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,即6x-5y-9=0.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,10.已知直線l經(jīng)過直線l1:2x+y-5=0與l2:x-2y=0的交點. (1)若點A(5,0)到l的距離為3,求l的方程;,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解 易知l不可能為l2,可設(shè)經(jīng)過兩已知直線交點的直線系方程為(2x+y-5)+λ(x-2y)=0, 即(2+λ)x+(1-2λ)y-5=0, ∵點A(5,0)到l的距離為3,,∴l(xiāng)的方程為x=2或4x-3y-5=0.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,(2)求點A(5,0)到l的距離的最大值.,解得交點P(2,1),如圖,過P作任一直線l,設(shè)d為點A到l的距離,則d≤PA(當l⊥PA時等號成立).,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,11.若點(m,n)在直線4x+3y-10=0上,則m2+n2的最小值是________.,解析 因為點(m,n)在直線4x+3y-10=0上, 所以4m+3n-10=0.,,解析答案,表示4m+3n-10=0上的點(m,n)到原點的距離,如圖.,當過原點的直線與直線4m+3n-10=0垂直時,原點到點(m,n)的距離最小為2.所以m2+n2的最小值為4.,4,12.如圖,已知直線l1∥l2,點A是l1,l2之間的定點,點A到l1,l2之間的距離分別為3和2,點B是l2上的一動點,作AC⊥AB,且AC與l1交于點C,則△ABC的面積的最小值為________.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析 以A為坐標原點,平行于l1的直線為x軸,建立如圖所示的直角坐標系,設(shè)B(a,-2),C(b,3),且a0,b0.,∵AC⊥AB,,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,即△ABC面積的最小值為6.,答案 6,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,13.在平面直角坐標系內(nèi),到點A(1,2),B(1,5),C(3,6),D(7,-1)的距離之和最小的點的坐標是________.,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析 如圖,設(shè)平面直角坐標系中任一點P,P到點A(1,2),B(1,5),C(3,6),D(7,-1)的距離之和為PA+PB+PC+PD=PB+PD+PA+PC≥BD+AC=QA+QB+QC+QD,,故四邊形ABCD對角線的交點Q即為所求距離之和最小的點. ∵A(1,2),B(1,5),C(3,6),D(7,-1),,,解析答案,∴直線AC的方程為y-2=2(x-1),直線BD的方程為y-5=-(x-1).,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,答案 (2,4),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,(2)求l關(guān)于點(2,3)對稱的直線方程.,解 在l上任取一點,如M(0,-1), 則M關(guān)于點(2,3)對稱的點為N(4,7). ∵當對稱點不在直線上時,關(guān)于點對稱的兩直線必平行, ∴所求直線過點N且與l平行,,,解析答案,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,又a>0,解得a=3.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,,,解析答案,返回,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解 假設(shè)存在點P,設(shè)點P(x0,y0). 若P點滿足條件②,則P點在與l1,l2平行的直線l′:2x-y+c=0上,,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,即|2x0-y0+3|=|x0+y0-1|, 所以x0-2y0+4=0或3x0+2=0; 由于點P在第一象限,所以3x0+2=0不可能.,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,,返回,- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學一輪復習 第九章 平面解析幾何 9.2 兩條直線的位置關(guān)系課件 高考 數(shù)學 一輪 復習 第九 平面 解析幾何 直線 位置 關(guān)系 課件
鏈接地址:http://m.appdesigncorp.com/p-2194053.html