有限元習題與答案

上傳人:jun****875 文檔編號:17774124 上傳時間:2020-12-05 格式:DOC 頁數:27 大?。?69.91KB
收藏 版權申訴 舉報 下載
有限元習題與答案_第1頁
第1頁 / 共27頁
有限元習題與答案_第2頁
第2頁 / 共27頁
有限元習題與答案_第3頁
第3頁 / 共27頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《有限元習題與答案》由會員分享,可在線閱讀,更多相關《有限元習題與答案(27頁珍藏版)》請在裝配圖網上搜索。

1、習題2.1 解釋如下的概念:應力、應變,幾何方程、物理方程、虛位移原理。解 應力是某截面上的應力在該處的集度。 應變是指單元體在某一個方向上有一個U的伸長量,其相對變化量就是應變。表示在x軸的方向上的正應變,其包括正應變和剪應變。 幾何方程是表示彈性體內節(jié)點的應變分量與位移分量之間的關系,其完整表示如下: 物理方程:表示應力和應變關系的方程某一點應力分量與應變分量之間的關系如下:虛位移原理:在彈性有一虛位移情況下,由于作用在每個質點上的力系,在相應的虛位移上虛功總和為零,即為:若彈性體在已知的面力和體力的作用下處于平衡狀態(tài),那么使彈性體產生虛位移,所有作用在彈性體上的體力在虛位移上所做的工就等

2、于彈性體所具有的虛位能。2.2說明彈性體力學中的幾個基本假設。 連續(xù)性假設:就是假定整個物體的體積都被組成該物體的介質所填滿,不存在任何間隙。 完全彈性假設:就是假定物體服從虎克定律。 各向同性假設:就是假定整個物體是由同意材料組成的。 小變形和小位移假設:就是指物體各點的位移都遠遠小于物體原來的尺寸,并且其應變和轉角都小于1。2.3簡述線應變與剪應變的幾何含義。線應變:應變和剛體轉動與位移導數的關系,剪應變表示單元體棱邊之間夾角的變化。2.4 推到平面應變平衡微分方程。解:對于單元體而言其平衡方程:在平面中有 代入上式的 2.5 如題圖2.1所示,被三個表面隔離出來平面應力狀態(tài)中的一點,求和

3、的值。解:x方向上:聯(lián)立二式得:2.6相對于xyz坐標系,一點的應力如下某表面的外法線方向余弦值為,求該表面的法相和切向應力。解:該平面的正應力全應力該平面的切應力2.7一點的應力如下MP求主應力和每一個主應力方向的方向余弦;球該店的最大剪應力。解:設主平面方向余弦為,由題知將代入得即 ,。最大剪應力(1)當時代入式(2.21)(2)當時代入式(2.21)且 2.8已知一點P的位移場為,求該點p(1,0,2)的應變分量。解:p點沿坐標方向的位移分量為u,v,w點p(1,0,2)處線應變?yōu)?,剪應變?yōu)椋?.9一具有平面應力場的物體,材料參數為E、v。有如下位移場 其中,a、b、c、d是常量。求討論

4、位移場的相容性解: 因為 所以滿足相容性條件有廣義胡克定律得又則2.10一具有平面應力場的物體,材料性質是E=210GPa,v=0.3.并且有如下位移場當x=0.050m,y=0.020m時,求物體的應力和應變。位移場是否相容?解:由廣義胡克定律,滿足相容性條件2.11對于一個沒有任何體積力的圓盤,處于平面應力狀態(tài)。其中 a, b, c, d, e, f, g, h是常量。為了使應力滿足平衡方程和相容方程,這些常量的約束條件是什么?解:由題意得:,代入平衡方程根據廣義胡克定律: 代入相容方程 (2)代入(1)得其中2.13 根據彈性力學平面問題的幾何方程,證明應變分量滿足下列方程,并解釋該方程

5、的意義。證明:彈性力學平面問題的幾何方程為: , , ,將方程,分別對y和x求二階偏導并相加得:等式右端項,該方程為相容方程中的第一式,其意義為彈性體內任一點都有確定的位移,且同一點不可能有連個不同的位移,應變分量應滿足相容方程,否則,變形后的微元體之間有可能出現開裂與重疊。2.14 假設Airy應力函數為,其中為常數,求,并求這些變量間的約束關系。解:由,對該應力函數求偏導得;對以上兩式的偏導可求得:考慮相容性條件,將上式代入可得各常量間的關系如下:2.15 對給定的應力矩陣,求最大Tresca和Von.Mises應力。將Von Mises應力和Tresca應力 20 10 10進行比較,=

6、 10 20 10 Mpa。10 10 20 z xy xz解:由Tresca準則:= y yz 故有s=20Mpa,max=s/2=10Mpa z1=(x+y)/2=30Mpa 2=10Mpa由Von Mises準則:2s2=6(xy2+yz2+yz2)解得s=30Mpa 30 -15 202.16 一點出的應力狀態(tài)由應力矩陣給出,即= -15 -25 10 Mpa,若E=70Gpa, 20 10 40 =0.33,求單位體積的應變能。解:單位體積應變能:=1/2Ex2+y2+z2-2u(xy+yz+zz)+2(1+u)(xy2 +xz2+yz2)u=(E-2)/2 =0.33帶入可得:=4

7、20.75J3.11 如圖3.11所示的平面三角形單元,厚度t=1cm,彈性模量E=2.0*105mpa,泊松比=0.3,試求插值函數矩陣N,應變矩陣B,應力矩陣S,單元剛度矩陣Ke。解:此三角形單元可得:2=(10-2)*4=32,故有a1=1/32*(8u1-5u2-16u3)a2=1/32*(4u1-4u2)a3=1/32*(-8u1+8u3)a4=1/32*(56v1-8v2-16v3)a5=1/32*(-4v1+4v2)a6=1/32*(-8v1+8v3)而b1=y2-y3=-4 b1=x2-x3=-8 b1=y3-y1=4 b1=x3-x1=0 b1=y1-y2=0 b1=x1-x

8、2=8 b1 0 b2 0 b3 0 -4 0 4 0 0B=1/2* 0 c1 0 c2 0 c3 =1/32* 0 -8 0 0 8 c1 b1 c2 b2 c3 b3 -8 4 0 8 0 1 0 1 0.3 0D=E/(1-2)* 1 0 =E/0.91* 0.3 1 0 0 0 (1-)/2 0 0 0.35 1 0.3 0 -0.125 0 0.125 0 0S=D*B=E/0.91* 0.3 1 0 * 0 -0.25 0 0 0.25 0 0 0.35 -0.25 0.125 0 0.25 0 1.4 0 -1.4 -0.7 0 0.7 0 4 -0.6 -4 0 0K=BT*

9、D*B*t*=E/36.4* -1.4 -0.6 2.4 1.3 0.6 0.7 -0.7 -4 1.3 -0.6 -1 0.35 0 0 0.6 -1 -0.6 0 0.7 0 0.7 -0.35 0 0 1 0 0 0.6 -1 -0.6 0 0.35 0.7 0 -0.7 -0.35 0 0.7 1.4 0 -1.4 -0.7K=BT*D*B*t*=E/36.4* 0.6 0 0 4 -0.6 -4 1 -0.7 -1.4 -0.6 2.4 1.3 0.6 -0.35 -1.4 -4 1.3 3.53.12 求下圖中所示的三角形的單元插值函數矩陣及應變矩陣,u1=2.0mm,v1=1.2

10、mm,u2=2.4mm,v2=1.2mm,u3=2.1mm,v3=1.4mm,求單元內的應變和應力,求出主應力及方向。若在單元jm邊作用有線性分布面載荷(x軸),求結點的的載荷分量。解:如圖2=64/3,解得以下參數:a1=19 a2=-2 a3=6; b1=-3 b2=4 b3=-1;c1=-1 c2=-3 c3=4;N1=64/3*(19-3x-y) N2=64/3*(-2-3x-3y)N3=64/3*(6-x+4y)故N= Ni 0 Nj 0 Nm 0 0 Ni 0 Nj 0 Nm 1 0 1 0 1 0 = 0 1 0 1 0 1 bi 0 bj 0 bm 0B=1/2* 0 ci 0

11、 cj 0 cm ci bi cj bj cm bm -3 0 4 0 -1 0=64/3* 0 -1 0 -3 0 4 -1 -3 -3 4 4 -1 1 0D=E/(1-2)* 1 0 0 0 (1-)/2 1 0 -3 0 4 0 -1 0單元應力矩陣S=D*B= E/13(1-2)* 1 0 * 0 -1 0 -3 0 4 0 0 (1-)/2 -1 -3 -3 4 4 -1 2 1.1 -3 -u 4 3u -1 4u 2.4單元應力=S*q= E/13(1-2)* -3u -1 4u -3 -u 4 * 1.2 (u-1)/2 (3u-3)/2 (3u-3)/2 2-2u 2-2u

12、 (u-1)/2 2.4 1.43.13 解:二維單元在x,y坐標平面內平移到不同位置,單元剛度矩陣相同,在平面矩陣180時變化,單元作上述變化時,應力矩陣不變化。(0,1)(2,1)3.14(2,0)(0,0)yx解:令,而,單元單元: 由和擴充KZ(總剛度陣)而,其中,化簡得:則,3.15如圖所示有限元網格,單元厚度,彈性模量,泊松比?;卮鹣率鰡栴}:(1)結點如何編號才能使結構剛度矩陣帶寬最???(2)如何設置位移邊界條件才能約束結構的剛體移動? (3)形成單元剛度矩陣并集成結構剛度矩陣。(4)如果施加一定載荷,擬定求解步驟。 (1) (2) (3)解:1、節(jié)點編號如圖(2)所示;2、如圖(

13、3)設置位移邊界條件才能約束結構的剛體移動;3、如圖(2)所示各節(jié)點的坐標為(以m為單位):1(0,0),2(0.08,0),3(0,0.04),4(0.08,0.04 ),5(0,0.08),6(0.08,0.08),7(0,0.12),8(0.08,0.12)解:單元號123456相鄰結點134557225466343678對于單元號1:;對于單元號2:;對于單元號3:;對于單元號4:;對于單元號5:;對于單元號6:;平面三角形單元的面積均為 彈性矩陣均為 應變矩陣 應力矩陣 單元剛度矩陣 結構剛度矩陣為: 若施加一定載荷,求解步驟為:1、對單元編號,并列出各單元三個結點的結點號;2、計算

14、外載荷的等效結點力,列出結構結點載荷列陣;3、計算單元剛度矩陣,組集結構整體剛度矩陣4、引入邊界條件,即根據約束情況修正結構有限元方程,特別是消除整體剛度矩陣的奇異性,得到考慮約束條件的可解的有限元方程。5、利用線性方程組的數值解法,對結構的有限元方程進行求解,得到所有各結點的位移向量。最后根據需要求解單元應力。3.16一長方形薄板如圖所示。其兩端受均勻拉伸。板長12cm,寬4cm,厚1cm。材料,泊松比。均勻拉力。使用有限元法求解板的內應力,并和精確解比較(提示:可利用結構對稱性,并用2個三角形單元對結構進行離散)。解:解:結點編號 12 34單元號12X坐標 012 012相鄰結點13Y坐

15、標 00 442234平面三角形單元的面積均為 應力矩陣為:單元1的應變距陣為:單元1的單元剛度矩陣為:單元2的應變距陣為:單元2的單元剛度矩陣為:總剛度矩陣為:位移分量為:載荷列陣為:因為 可以得單元1的單元應力: 單元2的單元應力: 長方形薄板內應力的精確解為:拉應力,用有限元法求解出的結果與精確解大致相等。3.17 驗證三角形單元的位移差值函數滿足及。解:平面三角形形函數為:,其中,分別是行列式2A中的第一行,第二行和第三行各元素的代數余子式。行列式中,任一行的元素與其相應的代數余子式的乘積之和等于行列式的值,而任一行的元素與其它行對應元素的代數余子式乘積之和為零,故有:當,同時有,同理

16、也有:,即。3.18 推導如圖所示的9節(jié)點矩形單元的形函數。解:三維桿單元的形狀函數, 在局部坐標系中令節(jié)點1,5,2所對應的帶入式得到節(jié)點1,5,2僅在x方向上的形函數: 同理可得: 由,即節(jié)點2,6,3,可得到沿著全局坐標系y軸的形狀函數(通過變量輪換),節(jié)點1的形函數即x,y方向的乘積:由此可得:同理可整理得:,3.19 如圖所示為一個桁架單元,端點力為U1,U2,端點位移為u1,u2,設內部任一點的軸向位移u是坐標x的線性函數:推導其形函數矩陣N。解:軸向位移u是坐標x的線性函數,寫成向量形式為,設兩個節(jié)點的坐標為,代入向量形式的位移函數解得:則由位移函數可得形函數為:4.1 答:軸對

17、稱三角形環(huán)單元不是常應變單元,如果彈性體的幾何形狀、約束條件及載荷都對稱于某一軸,則所有的位移應變及應力也是對稱于此軸,這樣問題稱為軸對稱。軸對稱三角形環(huán)單元與平面常應變單元是不同的,軸對稱三角形環(huán)單元的應變不是常數矩陣,其應變矩陣B=B B B,其中B=,(i,j,m)。應變分量,都是常量,但環(huán)向應變不是常量,它與,中的r和z有關。4.2 答:軸對稱問題中,剛度自由度:環(huán)向位移,徑向位移,軸向位移。以三角環(huán)單元平均半徑、平均高度進行計算的單元剛度矩陣,配合以精確積分所得的等效結點載荷矩陣,計算的結果還是不錯的!4.3 軸對稱問題的兩個單元a和b,設材料的彈性模量為E,泊松比為 = 0.15,

18、試手算這兩個單元的剛度矩陣。 解:對于單元,由題可知:單元a的截面面積為單元a的剛度矩陣寫成分塊矩陣形式為:其中子矩陣可寫為:所以的剛度矩陣為對于單元,由題可知單元的截面面積為單元的剛度矩陣寫成分塊矩陣形式為:其中子矩陣可寫為:所以單元的剛度矩陣為5.1 答:桿件受到縱向(平行于桿軸)載荷的作用,這樣桿件的拉壓問題;桿件受到橫向(垂直于桿軸)載荷的作用,這是梁的彎曲問題。桿件受到力相似到薄板就有,薄板受到縱向載荷的作用,這是平面應力問題;薄板受到橫向載荷的作用,這是薄板的彎曲問題。薄板的彎曲可以認為是梁彎曲的推廣,是雙向的彎曲問題,中面法線在變形后保持不伸縮,并且成為彈性曲面的法線,中面在變形

19、后,其線段和面積的投影形狀保持不變(小撓度薄板)。已知中面的撓度,而縱向位移、,主要應力分量,。某一點的位移:,。某一點的應力:,彈性曲面微分方程,其中板的抗撓剛度。5.2 答:矩形薄板單元:薄板單元位移函數并不滿足連續(xù)性或相容性要求,采用這種位移函數的單元是非協(xié)調單元,這種四節(jié)點矩形彎曲單元變形后,其撓度面在單元間雖然互相連續(xù),但其法向導數并不連續(xù),單元間在變形后是不連續(xù)光滑(有棱)的,當單元逐漸取小的時候,還能夠收斂于精確解。三角形薄板單元:常使用面積坐標,分析表明,只以撓度 及其一階導數 作為節(jié)點的位移函數用一般的形狀函數是不可能構造滿足相容性的薄板單元,需再加上二階導數,就可以實現。在

20、相鄰單元之間,撓度是連續(xù)的,但法向的斜率是不連續(xù)的,這種位移模式是非協(xié)調單云,收斂不如矩形單元,單元足夠小,節(jié)點增多,如六節(jié)點三角形,九節(jié)點三角形等。5.3談論在平面應力和彎曲狀態(tài)組合的情況下,三角形剛度矩陣的特點(1) 平面內的作用力產生的變形不影響彎曲變形,反之亦然(2) 節(jié)點把轉向 在兩種應力狀態(tài)下都不加入到變形中,相應的節(jié)點力也不存在,將平面應力狀態(tài)和彎曲狀態(tài)加以組合后,單元的每個節(jié)點的位移向量和節(jié)點力向量是 要指出的是,在局部坐標系中,節(jié)點位移不包括 ,但為了下一步將局部坐標系的單元剛度陣換到總體坐標系下進行集成,由于平面應力狀態(tài)下的節(jié)點力和平面應力狀態(tài)下的節(jié)點位移 互不影響,彎曲應

21、力狀態(tài)下的節(jié)點與平面應力狀態(tài)下的節(jié)點位移互不影響,所以組合應力狀態(tài)下的平板、薄板單元的單元剛度矩陣如下:,=其中矩陣和分別是平面應力問題和薄板彎曲問題的相應子矩陣,三角形單元的單元剛度矩陣是1818矩陣。6.1 結構的動態(tài)特性:結構的固有頻率及其相應的模型,以及在隨著時間而變形的外加激振力的激勵下,機器或結構被激起的位移,應力或稱被激起的動力響應,機械產品的動態(tài)性能是其重要的性能指標,尤其對現代復雜、高速、重載精密機械系統(tǒng),動態(tài)性能是影響其工作性能及產品指標的關鍵技術指標,機械結構的動態(tài)特性問題早在上個世紀30年代就引起人們的重視,動態(tài)特性的發(fā)展為機械動態(tài)設計提供了堅實的基礎。6.2 結構離散

22、后,在運動狀態(tài)各節(jié)點的動力平衡為:其中,分別以慣性力、阻尼力和動力載荷均為矢量,為彈性力,彈性力矢量可用節(jié)點位移和剛度矩陣表示為:=式中剛度矩陣的元素為節(jié)點j的單位位移在節(jié)點i引起的彈性力,根據達朗貝爾原理,可利用質量矩陣和節(jié)點加速度表示慣性如下:=式中質量矩陣為節(jié)點j的單位加速度在節(jié)點i引起的慣性力,設結構阻尼(滯粘),可用阻尼矩陣C和節(jié)點速度,表示阻尼如下:=,將各式帶入:+=,記=,=。則運動方程:+=6.3單元的質量矩陣:= 質量矩陣是對稱陣,各節(jié)點的質量互相耦合,即平動慣性和轉動慣性之間耦合,如果把單元的一致質量集中的分配在它們的節(jié)點上,則此質量矩陣成為集中質量矩陣質量分配原則:按靜

23、力學平行力的分配法則,將單元的一致質量矩陣用集中于節(jié)點外的質量來代替,形函數計算所得的M稱為一致質量矩陣。6.5 結構阻尼(只與結構本身材料性質有關)結構在自由振動過程中,如果沒有能量的耗散,振動將永遠保持由初始條件決定的振幅持續(xù)不停,但實際上,結構自由振動的振幅都會隨時間而衰減,經過一定時間后,這是因為系統(tǒng)的能量因某些原因而消耗,這種能量的耗散作用稱阻尼,由阻尼使振動衰減的系統(tǒng)稱為阻尼系統(tǒng)。在結構內部阻尼是非粘線的,但它近似于線性的,彈性材料,特別是金屬材料表示一種結構阻尼的性質,這種阻尼是由于材料受力變形而產生的內摩擦力和變形之間產生了相位滯后。產生能量耗散的原因有結構的內摩擦(或粘性)構

24、件接口處的摩擦、周圍介質(如空氣、建筑物地基)的阻尼影響等,但有關阻尼的作用機理,目前尚未完全研究清楚。1.推導橫截面積為A的一維桁架架構單元剛度矩陣。解:設桿件兩端點位i,j,為單元局部坐標,表示單元任一截面的位置,則其發(fā)生的位移:u=a0+b1,v=b0+b1+b22+b33,即: u 1 0 0 0 0 = *(a0 b0 b1 a1 b2 b3)T v 1 0 0 2 2 H 記U=u,v=H* ,由i,j兩端的位移分量可得:=G* ,1 0 0 0 0 0 0 1 0 0 0 0其中G= 0 0 1 0 0 0 給上式左乘G-1,則有 1 0 0 L 0 0 0 1 L 0 L2 L

25、3 0 0 1 0 2L 3L2u=H* G-1*,令N= H* G-1N1=1-/L 0 0 /L 0 0, N2=0 1-3/L2+2/L3 *(1-/L)2 0 3/L2+2/L3 *(/L-1)*/L, 應用幾何物理方程可得:= n = *=B* n 利用虛功原理推得:Ke=E*= EA/L 0 12EIZ/L3 對 0 6EIZ/L2 4EIZ/L 稱 -EA/L 0 0 -EA/L 0 -12EIZ/L3 -6EIZ/L2 0 -12EIZ/L3 0 -6EIZ/L2 2EIZ/L 0 -6EIZ/L2 -EA/L2.如圖2為一個平面超靜定桁架結構,在載荷P的作用下,求各個桿的軸力

26、。此結構可以看成由14,24,34三個桿組成的,每個桿單元的兩端為桿單元的結點,各結點的水平,鉛直位移分別用u、v表示。解:由題意可得:各桿件在局部坐標系下的單元剛度矩陣: 1 0 -1 0 0 0 0 0ke=EA/L -1 0 1 0 e=(14, 24, 34) 0 0 0 0圖2 桁架超靜定結構對于14桿轉角=/2+,cos=-cos,sin=sin, sin -cos 0 0 cos sin 0 0故T14= 0 0 sin -cos 0 0 cos sin sin2 sin* cos -sin2 -sin* cos對于K14=T14 T*K14 *T14=EA/L* -sin* c

27、os cos2 sin* cos -cos2 -sin2 -sin* cos sin2 sin* cos sin* cos -cos2 -sin* cos cos2對于24桿轉角=90,則有: 0 0 0 0 0 1 0 -1K24= EA/L* 0 0 0 0 0 -1 0 1對于34桿轉角=/2-,cos=cos,sin=-sin,cos -sin 0 0 -sin cos 0 0故T34= 0 0 -cos sin 0 0 -sin cos 對于K34=T34 T*K34 *T34 -sin2 sin* cos -sin2 -sin* cos 0 0 0 0 sin* cos cos2

28、-sin* cos cos2 0 0 0 0 sin2 sin* cos 0 0 0 0 -sin2 -sin* cos Ke=K14+K24+K34=EA/L* -sin* cos cos2 0 -1 0 -1 -sin* cos cos2 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 -sin2 -sin* cos 0 0 sin2 sin* cos 0 0 -sin* cos -cos2 0 0 sin* cos cos2利用K*0 0 u v 0 0 0 0=0 0 0 P 0 0 0 0,可以解得u,v的值。對于桿單元14時,14=K14*q14可以求得;

29、對于桿單元24時,24=K24*q24可以求得;對于桿單元34時,34=K34*q34可以求得。3.如圖3所示的鋼架中,兩桿為尺寸相等的等截面桿件,橫截面積為A=0.5m2,截面慣性矩為I=1/24m4,E=3*107kpa,求解此結構。圖3 鋼架解:將桿件單元標出單元號碼及結點號碼(如圖所示),鋼架的單元參數如下:單元數為2,結點數為3,各桿件子局部坐標系下的單元剛度矩陣: -1 0 -1 0Ke=EA/L* 0 0 0 0 e=1,2 -1 0 1 0 0 0 0 0 -1 0 -1 0對于單元轉角=0,故K =EA/L* 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0對于單元轉角=90,故K = EA/L* 0 1 0 -1 0 0 0 0 0 -1 0 1 1 0 0 0 -1 0 0 1 0 -1 0 0 0 0 0 0 0 0K=K +K =EA/L* 0 -1 0 1 0 0 -1 0 0 0 1 0 0 0 0 0 0 0由K*u v 0 0 0 0=14 -22 0 0 0 0,可以求得u,v。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!