2017年內(nèi)蒙古呼和浩特市中考數(shù)學(xué)試卷(解析版)
-
資源ID:1484205
資源大小:734.50KB
全文頁(yè)數(shù):34頁(yè)
- 資源格式: DOC
下載積分:20積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
2017年內(nèi)蒙古呼和浩特市中考數(shù)學(xué)試卷(解析版)
https:/shop207885798.taobao.com/category.htm?spm=a1z10.1-c.w4010-16395402682.2.m7z0lQ&search=y2017年內(nèi)蒙古呼和浩特市中考數(shù)學(xué)試卷一、選擇題(本大題共10小題,每小題3分,共30分)1我市冬季里某一天的最低氣溫是10,最高氣溫是5,這一天的溫差為()A5B5C10D152中國(guó)的陸地面積約為9600000km2,將這個(gè)數(shù)用科學(xué)記數(shù)法可表示為()A0.96×107km2B960×104km2C9.6×106km2D9.6×105km23圖中序號(hào)(1)(2)(3)(4)對(duì)應(yīng)的四個(gè)三角形,都是ABC這個(gè)圖形進(jìn)行了一次變換之后得到的,其中是通過(guò)軸對(duì)稱(chēng)得到的是()A(1)B(2)C(3)D(4)4如圖,是根據(jù)某市2010年至2014年工業(yè)生產(chǎn)總值繪制的折線(xiàn)統(tǒng)計(jì)圖,觀(guān)察統(tǒng)計(jì)圖獲得以下信息,其中信息判斷錯(cuò)誤的是()A2010年至2014年間工業(yè)生產(chǎn)總值逐年增加B2014年的工業(yè)生產(chǎn)總值比前一年增加了40億元C2012年與2013年每一年與前一年比,其增長(zhǎng)額相同D從2011年至2014年,每一年與前一年比,2014年的增長(zhǎng)率最大5關(guān)于x的一元二次方程x2+(a22a)x+a1=0的兩個(gè)實(shí)數(shù)根互為相反數(shù),則a的值為()A2B0C1D2或06一次函數(shù)y=kx+b滿(mǎn)足kb0,且y隨x的增大而減小,則此函數(shù)的圖象不經(jīng)過(guò)()A第一象限B第二象限C第三象限D(zhuǎn)第四象限7如圖,CD為O的直徑,弦ABCD,垂足為M,若AB=12,OM:MD=5:8,則O的周長(zhǎng)為()A26B13CD8下列運(yùn)算正確的是()A(a2+2b2)2(a2+b2)=3a2+b2Ba1=C(a)3m÷am=(1)ma2mD6x25x1=(2x1)(3x1)9如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,E,F(xiàn)為BD所在直線(xiàn)上的兩點(diǎn),若AE=,EAF=135°,則下列結(jié)論正確的是()ADE=1BtanAFO=CAF=D四邊形AFCE的面積為10函數(shù)y=的大致圖象是()ABCD二、填空題(本大題共6小題,每小題3分,共18分)11若式子有意義,則x的取值范圍是 12如圖,ABCD,AE平分CAB交CD于點(diǎn)E,若C=48°,則AED為 °13如圖是某幾何體的三視圖,根據(jù)圖中數(shù)據(jù),求得該幾何體的表面積為 14下面三個(gè)命題:若是方程組的解,則a+b=1或a+b=0;函數(shù)y=2x2+4x+1通過(guò)配方可化為y=2(x1)2+3;最小角等于50°的三角形是銳角三角形,其中正確命題的序號(hào)為 15如圖,在A(yíng)BCD中,B=30°,AB=AC,O是兩條對(duì)角線(xiàn)的交點(diǎn),過(guò)點(diǎn)O作AC的垂線(xiàn)分別交邊AD,BC于點(diǎn)E,F(xiàn),點(diǎn)M是邊AB的一個(gè)三等分點(diǎn),則AOE與BMF的面積比為 16我國(guó)魏晉時(shí)期數(shù)學(xué)家劉徽首創(chuàng)“割圓術(shù)”計(jì)算圓周率隨著時(shí)代發(fā)展,現(xiàn)在人們依據(jù)頻率估計(jì)概率這一原理,常用隨機(jī)模擬的方法對(duì)圓周率進(jìn)行估計(jì),用計(jì)算機(jī)隨機(jī)產(chǎn)生m個(gè)有序數(shù)對(duì)(x,y)(x,y是實(shí)數(shù),且0x1,0y1),它們對(duì)應(yīng)的點(diǎn)在平面直角坐標(biāo)系中全部在某一個(gè)正方形的邊界及其內(nèi)部如果統(tǒng)計(jì)出這些點(diǎn)中到原點(diǎn)的距離小于或等于1的點(diǎn)有n個(gè),則據(jù)此可估計(jì)的值為 (用含m,n的式子表示)三、解答題(本大題共9小題,共72分)17(1)計(jì)算:|2|()+;(2)先化簡(jiǎn),再求值:÷+,其中x=18如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線(xiàn)(1)求證:BD=CE;(2)設(shè)BD與CE相交于點(diǎn)O,點(diǎn)M,N分別為線(xiàn)段BO和CO的中點(diǎn),當(dāng)ABC的重心到頂點(diǎn)A的距離與底邊長(zhǎng)相等時(shí),判斷四邊形DEMN的形狀,無(wú)需說(shuō)明理由19為了解某地某個(gè)季度的氣溫情況,用適當(dāng)?shù)某闃臃椒◤脑摰剡@個(gè)季度中抽取30天,對(duì)每天的最高氣溫x(單位:)進(jìn)行調(diào)查,并將所得的數(shù)據(jù)按照12x16,16x20,20x24,24x28,28x32分成五組,得到如圖頻數(shù)分布直方圖(1)求這30天最高氣溫的平均數(shù)和中位數(shù)(各組的實(shí)際數(shù)據(jù)用該組的組中值代表);(2)每月按30天計(jì)算,各組的實(shí)際數(shù)據(jù)用該組的組中值代表,估計(jì)該地這個(gè)季度中最高氣溫超過(guò)(1)中平均數(shù)的天數(shù);(3)如果從最高氣溫不低于24的兩組內(nèi)隨機(jī)選取兩天,請(qǐng)你直接寫(xiě)出這兩天都在氣溫最高一組內(nèi)的概率20某專(zhuān)賣(mài)店有A,B兩種商品,已知在打折前,買(mǎi)60件A商品和30件B商品用了1080元,買(mǎi)50件A商品和10件B商品用了840元,A,B兩種商品打相同折以后,某人買(mǎi)500件A商品和450件B商品一共比不打折少花1960元,計(jì)算打了多少折?21已知關(guān)于x的不等式x1(1)當(dāng)m=1時(shí),求該不等式的解集;(2)m取何值時(shí),該不等式有解,并求出解集22如圖,地面上小山的兩側(cè)有A,B兩地,為了測(cè)量A,B兩地的距離,讓一熱氣球從小山西側(cè)A地出發(fā)沿與AB成30°角的方向,以每分鐘40m的速度直線(xiàn)飛行,10分鐘后到達(dá)C處,此時(shí)熱氣球上的人測(cè)得CB與AB成70°角,請(qǐng)你用測(cè)得的數(shù)據(jù)求A,B兩地的距離AB長(zhǎng)(結(jié)果用含非特殊角的三角函數(shù)和根式表示即可)23已知反比例函數(shù)y=(k為常數(shù))(1)若點(diǎn)P1(,y1)和點(diǎn)P2(,y2)是該反比例函數(shù)圖象上的兩點(diǎn),試?yán)梅幢壤瘮?shù)的性質(zhì)比較y1和y2的大??;(2)設(shè)點(diǎn)P(m,n)(m0)是其圖象上的一點(diǎn),過(guò)點(diǎn)P作PMx軸于點(diǎn)M若tanPOM=2,PO=(O為坐標(biāo)原點(diǎn)),求k的值,并直接寫(xiě)出不等式kx+0的解集24如圖,點(diǎn)A,B,C,D是直徑為AB的O上的四個(gè)點(diǎn),C是劣弧的中點(diǎn),AC與BD交于點(diǎn)E(1)求證:DC2=CEAC;(2)若AE=2,EC=1,求證:AOD是正三角形;(3)在(2)的條件下,過(guò)點(diǎn)C作O的切線(xiàn),交AB的延長(zhǎng)線(xiàn)于點(diǎn)H,求ACH的面積25在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=ax2+bx+c與y軸交于點(diǎn)C,其頂點(diǎn)記為M,自變量x=1和x=5對(duì)應(yīng)的函數(shù)值相等若點(diǎn)M在直線(xiàn)l:y=12x+16上,點(diǎn)(3,4)在拋物線(xiàn)上(1)求該拋物線(xiàn)的解析式;(2)設(shè)y=ax2+bx+c對(duì)稱(chēng)軸右側(cè)x軸上方的圖象上任一點(diǎn)為P,在x軸上有一點(diǎn)A(,0),試比較銳角PCO與ACO的大?。ú槐刈C明),并寫(xiě)出相應(yīng)的P點(diǎn)橫坐標(biāo)x的取值范圍(3)直線(xiàn)l與拋物線(xiàn)另一交點(diǎn)記為B,Q為線(xiàn)段BM上一動(dòng)點(diǎn)(點(diǎn)Q不與M重合),設(shè)Q點(diǎn)坐標(biāo)為(t,n),過(guò)Q作QHx軸于點(diǎn)H,將以點(diǎn)Q,H,O,C為頂點(diǎn)的四邊形的面積S表示為t的函數(shù),標(biāo)出自變量t的取值范圍,并求出S可能取得的最大值2017年內(nèi)蒙古呼和浩特市中考數(shù)學(xué)試卷參考答案與試題解析一、選擇題(本大題共10小題,每小題3分,共30分)1我市冬季里某一天的最低氣溫是10,最高氣溫是5,這一天的溫差為()A5B5C10D15【考點(diǎn)】1A:有理數(shù)的減法【分析】用最高溫度減去最低溫度,再根據(jù)減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù)進(jìn)行計(jì)算即可得解【解答】解:5(10),=5+10,=15故選D2中國(guó)的陸地面積約為9600000km2,將這個(gè)數(shù)用科學(xué)記數(shù)法可表示為()A0.96×107km2B960×104km2C9.6×106km2D9.6×105km2【考點(diǎn)】1I:科學(xué)記數(shù)法表示較大的數(shù)【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1|a|10,n為整數(shù)確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同當(dāng)原數(shù)絕對(duì)值大于10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值小于1時(shí),n是負(fù)數(shù)【解答】解:將9600000用科學(xué)記數(shù)法表示為:9.6×106故選:C3圖中序號(hào)(1)(2)(3)(4)對(duì)應(yīng)的四個(gè)三角形,都是ABC這個(gè)圖形進(jìn)行了一次變換之后得到的,其中是通過(guò)軸對(duì)稱(chēng)得到的是()A(1)B(2)C(3)D(4)【考點(diǎn)】P3:軸對(duì)稱(chēng)圖形【分析】軸對(duì)稱(chēng)是沿著某條直線(xiàn)翻轉(zhuǎn)得到新圖形,據(jù)此判斷出通過(guò)軸對(duì)稱(chēng)得到的是哪個(gè)圖形即可【解答】解:軸對(duì)稱(chēng)是沿著某條直線(xiàn)翻轉(zhuǎn)得到新圖形,通過(guò)軸對(duì)稱(chēng)得到的是(1)故選:A4如圖,是根據(jù)某市2010年至2014年工業(yè)生產(chǎn)總值繪制的折線(xiàn)統(tǒng)計(jì)圖,觀(guān)察統(tǒng)計(jì)圖獲得以下信息,其中信息判斷錯(cuò)誤的是()A2010年至2014年間工業(yè)生產(chǎn)總值逐年增加B2014年的工業(yè)生產(chǎn)總值比前一年增加了40億元C2012年與2013年每一年與前一年比,其增長(zhǎng)額相同D從2011年至2014年,每一年與前一年比,2014年的增長(zhǎng)率最大【考點(diǎn)】VD:折線(xiàn)統(tǒng)計(jì)圖【分析】根據(jù)題意結(jié)合折線(xiàn)統(tǒng)計(jì)圖確定正確的選項(xiàng)即可【解答】解:A、2010年至2014年間工業(yè)生產(chǎn)總值逐年增加,正確,不符合題意;B、2014年的工業(yè)生產(chǎn)總值比前一年增加了40億元,正確,不符合題意;C、2012年與2013年每一年與前一年比,其增長(zhǎng)額相同,正確,不符合題意;D、從2011年至2014年,每一年與前一年比,2012年的增長(zhǎng)率最大,故D符合題意;故選:D5關(guān)于x的一元二次方程x2+(a22a)x+a1=0的兩個(gè)實(shí)數(shù)根互為相反數(shù),則a的值為()A2B0C1D2或0【考點(diǎn)】AB:根與系數(shù)的關(guān)系【分析】設(shè)方程的兩根為x1,x2,根據(jù)根與系數(shù)的關(guān)系得a22a=0,解得a=0或a=2,然后利用判別式的意義確定a的取值【解答】解:設(shè)方程的兩根為x1,x2,根據(jù)題意得x1+x2=0,所以a22a=0,解得a=0或a=2,當(dāng)a=2時(shí),方程化為x2+1=0,=40,故a=2舍去,所以a的值為0故選B6一次函數(shù)y=kx+b滿(mǎn)足kb0,且y隨x的增大而減小,則此函數(shù)的圖象不經(jīng)過(guò)()A第一象限B第二象限C第三象限D(zhuǎn)第四象限【考點(diǎn)】F7:一次函數(shù)圖象與系數(shù)的關(guān)系【分析】根據(jù)y隨x的增大而減小得:k0,又kb0,則b0再根據(jù)k,b的符號(hào)判斷直線(xiàn)所經(jīng)過(guò)的象限【解答】解:根據(jù)y隨x的增大而減小得:k0,又kb0,則b0,故此函數(shù)的圖象經(jīng)過(guò)第二、三、四象限,即不經(jīng)過(guò)第一象限故選A7如圖,CD為O的直徑,弦ABCD,垂足為M,若AB=12,OM:MD=5:8,則O的周長(zhǎng)為()A26B13CD【考點(diǎn)】M2:垂徑定理【分析】連接OA,根據(jù)垂徑定理得到AM=AB=6,設(shè)OM=5x,DM=8x,得到OA=OD=13x,根據(jù)勾股定理得到OA=×13,于是得到結(jié)論【解答】解:連接OA,CD為O的直徑,弦ABCD,AM=AB=6,OM:MD=5:8,設(shè)OM=5x,DM=8x,OA=OD=13x,AM=12x=6,x=,OA=×13,O的周長(zhǎng)=2OA=13,故選B8下列運(yùn)算正確的是()A(a2+2b2)2(a2+b2)=3a2+b2Ba1=C(a)3m÷am=(1)ma2mD6x25x1=(2x1)(3x1)【考點(diǎn)】6B:分式的加減法;4I:整式的混合運(yùn)算;57:因式分解十字相乘法等【分析】直接利用分式的加減運(yùn)算法則以及結(jié)合整式除法運(yùn)算法則和因式分解法分別分析得出答案【解答】解:A、(a2+2b2)2(a2+b2)=3a2,故此選項(xiàng)錯(cuò)誤;B、a1=,故此選項(xiàng)錯(cuò)誤;C、(a)3m÷am=(1)ma2m,正確;D、6x25x1,無(wú)法在實(shí)數(shù)范圍內(nèi)分解因式,故此選項(xiàng)錯(cuò)誤;故選:C9如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,E,F(xiàn)為BD所在直線(xiàn)上的兩點(diǎn),若AE=,EAF=135°,則下列結(jié)論正確的是()ADE=1BtanAFO=CAF=D四邊形AFCE的面積為【考點(diǎn)】LE:正方形的性質(zhì);T7:解直角三角形【分析】根據(jù)正方形的性質(zhì)求出AO的長(zhǎng),用勾股定理求出EO的長(zhǎng),然后由MAN=135°及BAD=90°可以得到相似三角形,根據(jù)相似三角形的性質(zhì)求出BF的長(zhǎng),再一一計(jì)算即可判斷【解答】解:四邊形ABCD是正方形,AB=CB=CD=AD=1,ACBD,ADO=ABO=45°,OD=OB=OA=,ABF=ADE=135°,在RtAEO中,EO=,DE=,故A錯(cuò)誤EAF=135°,BAD=90°,BAF+DAE=45°,ADO=DAE+AED=45°,BAF=AED,ABFEDA,=,=,BF=,在RtAOF中,AF=,故C正確,tanAFO=,故B錯(cuò)誤,S四邊形AECF=ACEF=××=,故D錯(cuò)誤,故選C10函數(shù)y=的大致圖象是()ABCD【考點(diǎn)】E6:函數(shù)的圖象【分析】本題可用排除法解答,根據(jù)y始終大于0,可排除D,再根據(jù)x0可排除A,根據(jù)函數(shù)y=和y=x有交點(diǎn)即可排除C,即可解題【解答】解:|x|為分母,|x|0,即|x|0,A錯(cuò)誤;x2+10,|x|0,y=0,D錯(cuò)誤;當(dāng)直線(xiàn)經(jīng)過(guò)(0,0)和(1,)時(shí),直線(xiàn)解析式為y=x,當(dāng)y=x=時(shí),x=,y=x與y=有交點(diǎn),C錯(cuò)誤;當(dāng)直線(xiàn)經(jīng)過(guò)(0,0)和(1,1)時(shí),直線(xiàn)解析式為y=x,當(dāng)y=x=時(shí),x無(wú)解,y=x與y=沒(méi)有有交點(diǎn),B正確;故選B二、填空題(本大題共6小題,每小題3分,共18分)11若式子有意義,則x的取值范圍是x【考點(diǎn)】72:二次根式有意義的條件;62:分式有意義的條件【分析】根據(jù)二次根式有意義的條件:被開(kāi)方數(shù)為非負(fù)數(shù),再結(jié)合分式有意義的條件:分母0,可得不等式12x0,再解不等式即可【解答】解:由題意得:12x0,解得:x,故答案為:x,12如圖,ABCD,AE平分CAB交CD于點(diǎn)E,若C=48°,則AED為114°【考點(diǎn)】JA:平行線(xiàn)的性質(zhì);IJ:角平分線(xiàn)的定義【分析】根據(jù)平行線(xiàn)性質(zhì)求出CAB的度數(shù),根據(jù)角平分線(xiàn)求出EAB的度數(shù),根據(jù)平行線(xiàn)性質(zhì)求出AED的度數(shù)即可【解答】解:ABCD,C+CAB=180°,C=48°,CAB=180°48°=132°,AE平分CAB,EAB=66°,ABCD,EAB+AED=180°,AED=180°66°=114°,故答案為:11413如圖是某幾何體的三視圖,根據(jù)圖中數(shù)據(jù),求得該幾何體的表面積為【考點(diǎn)】U3:由三視圖判斷幾何體【分析】根據(jù)給出的幾何體的三視圖可知幾何體是由圓柱體和圓錐體構(gòu)成,從而根據(jù)三視圖的特點(diǎn)得知高和底面直徑,代入表面積公式計(jì)算即可【解答】解:由三視圖可知,幾何體是由圓柱體和圓錐體構(gòu)成,故該幾何體的表面積為:20×10+×82+×10×=故答案是:14下面三個(gè)命題:若是方程組的解,則a+b=1或a+b=0;函數(shù)y=2x2+4x+1通過(guò)配方可化為y=2(x1)2+3;最小角等于50°的三角形是銳角三角形,其中正確命題的序號(hào)為【考點(diǎn)】O1:命題與定理【分析】根據(jù)方程組的解的定義,把代入,即可判斷;利用配方法把函數(shù)y=2x2+4x+1化為頂點(diǎn)式,即可判斷;根據(jù)三角形內(nèi)角和定理以及銳角三角形的定義即可判斷【解答】解:把代入,得,如果a=2,那么b=1,a+b=3;如果a=2,那么b=7,a+b=9故命題是假命題;y=2x2+4x+1=2(x1)2+3,故命題是真命題;最小角等于50°的三角形,最大角不大于80°,一定是銳角三角形,故命題是真命題所以正確命題的序號(hào)為故答案為15如圖,在A(yíng)BCD中,B=30°,AB=AC,O是兩條對(duì)角線(xiàn)的交點(diǎn),過(guò)點(diǎn)O作AC的垂線(xiàn)分別交邊AD,BC于點(diǎn)E,F(xiàn),點(diǎn)M是邊AB的一個(gè)三等分點(diǎn),則AOE與BMF的面積比為3:4【考點(diǎn)】S9:相似三角形的判定與性質(zhì);L5:平行四邊形的性質(zhì)【分析】作MHBC于H,設(shè)AB=AC=m,則BM=m,MH=BM=m,根據(jù)平行四邊形的性質(zhì)求得OA=OC=AC=m,解直角三角形求得FC=m,然后根據(jù)ASA證得AOECOF,證得AE=FC=m,進(jìn)一步求得OE=AE=m,從而求得SAOE=m2,作ANBC于N,根據(jù)等腰三角形的性質(zhì)以及解直角三角形求得BC=m,進(jìn)而求得BF=BCFC=mm=m,分別求得AOE與BMF的面積,即可求得結(jié)論【解答】解:設(shè)AB=AC=m,則BM=m,O是兩條對(duì)角線(xiàn)的交點(diǎn),OA=OC=AC=m,B=30°,AB=AC,ACB=B=30°,EFAC,cosACB=,即cos30°=,F(xiàn)C=m,AEFC,EAC=FCA,又AOE=COF,AO=CO,AOECOF,AE=FC=m,OE=AE=m,SAOE=OAOE=××m=m2,作ANBC于N,AB=AC,BN=CN=BC,BN=AB=m,BC=m,BF=BCFC=mm=m,作MHBC于H,B=30°,MH=BM=m,SBMF=BFMH=×m×m=m2,=故答案為3:416我國(guó)魏晉時(shí)期數(shù)學(xué)家劉徽首創(chuàng)“割圓術(shù)”計(jì)算圓周率隨著時(shí)代發(fā)展,現(xiàn)在人們依據(jù)頻率估計(jì)概率這一原理,常用隨機(jī)模擬的方法對(duì)圓周率進(jìn)行估計(jì),用計(jì)算機(jī)隨機(jī)產(chǎn)生m個(gè)有序數(shù)對(duì)(x,y)(x,y是實(shí)數(shù),且0x1,0y1),它們對(duì)應(yīng)的點(diǎn)在平面直角坐標(biāo)系中全部在某一個(gè)正方形的邊界及其內(nèi)部如果統(tǒng)計(jì)出這些點(diǎn)中到原點(diǎn)的距離小于或等于1的點(diǎn)有n個(gè),則據(jù)此可估計(jì)的值為(用含m,n的式子表示)【考點(diǎn)】X8:利用頻率估計(jì)概率;D2:規(guī)律型:點(diǎn)的坐標(biāo)【分析】根據(jù)落在扇形內(nèi)的點(diǎn)的個(gè)數(shù)與正方形內(nèi)點(diǎn)的個(gè)數(shù)之比等于兩者的面積之比列出=,可得答案【解答】解:根據(jù)題意,點(diǎn)的分布如圖所示:則有=,=,故答案為:三、解答題(本大題共9小題,共72分)17(1)計(jì)算:|2|()+;(2)先化簡(jiǎn),再求值:÷+,其中x=【考點(diǎn)】6D:分式的化簡(jiǎn)求值;2C:實(shí)數(shù)的運(yùn)算【分析】(1)原式利用絕對(duì)值的代數(shù)意義化簡(jiǎn),去括號(hào)合并即可得到結(jié)果;(2)原式第一項(xiàng)利用除法法則變形,約分后利用同分母分式的加法法則計(jì)算得到最簡(jiǎn)結(jié)果,把x的值代入計(jì)算即可求出值【解答】解:(1)原式=2+=21;(2)原式=+=+=,當(dāng)x=時(shí),原式=18如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線(xiàn)(1)求證:BD=CE;(2)設(shè)BD與CE相交于點(diǎn)O,點(diǎn)M,N分別為線(xiàn)段BO和CO的中點(diǎn),當(dāng)ABC的重心到頂點(diǎn)A的距離與底邊長(zhǎng)相等時(shí),判斷四邊形DEMN的形狀,無(wú)需說(shuō)明理由【考點(diǎn)】KD:全等三角形的判定與性質(zhì);K5:三角形的重心;KH:等腰三角形的性質(zhì)【分析】(1)根據(jù)已知條件得到AD=AE,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(2)根據(jù)三角形中位線(xiàn)的性質(zhì)得到EDBC,ED=BC,MNBC,MN=BC,等量代換得到EDMN,ED=MN,推出四邊形EDNM是平行四邊形,由(1)知BD=CE,求得DM=EN,得到四邊形EDNM是矩形,根據(jù)全等三角形的性質(zhì)得到OB=OC,由三角形的重心的性質(zhì)得到O到BC的距離=BC,根據(jù)直角三角形的判定得到BDCE,于是得到結(jié)論【解答】(1)解:由題意得,AB=AC,BD,CE分別是兩腰上的中線(xiàn),AD=AC,AE=AB,AD=AE,在A(yíng)BD和ACE中,ABDACE(ASA)BD=CE;(2)四邊形DEMN是正方形,證明:E、D分別是AB、AC的中點(diǎn),AE=AB,AD=AC,ED是ABC的中位線(xiàn),EDBC,ED=BC,點(diǎn)M、N分別為線(xiàn)段BO和CO中點(diǎn),OM=BM,ON=CN,MN是OBC的中位線(xiàn),MNBC,MN=BC,EDMN,ED=MN,四邊形EDNM是平行四邊形,由(1)知BD=CE,又OE=ON,OD=OM,OM=BM,ON=CN,DM=EN,四邊形EDNM是矩形,在BDC與CEB中,BDCCEB,BCE=CBD,OB=OC,ABC的重心到頂點(diǎn)A的距離與底邊長(zhǎng)相等,O到BC的距離=BC,BDCE,四邊形DEMN是正方形19為了解某地某個(gè)季度的氣溫情況,用適當(dāng)?shù)某闃臃椒◤脑摰剡@個(gè)季度中抽取30天,對(duì)每天的最高氣溫x(單位:)進(jìn)行調(diào)查,并將所得的數(shù)據(jù)按照12x16,16x20,20x24,24x28,28x32分成五組,得到如圖頻數(shù)分布直方圖(1)求這30天最高氣溫的平均數(shù)和中位數(shù)(各組的實(shí)際數(shù)據(jù)用該組的組中值代表);(2)每月按30天計(jì)算,各組的實(shí)際數(shù)據(jù)用該組的組中值代表,估計(jì)該地這個(gè)季度中最高氣溫超過(guò)(1)中平均數(shù)的天數(shù);(3)如果從最高氣溫不低于24的兩組內(nèi)隨機(jī)選取兩天,請(qǐng)你直接寫(xiě)出這兩天都在氣溫最高一組內(nèi)的概率【考點(diǎn)】X6:列表法與樹(shù)狀圖法;V5:用樣本估計(jì)總體;V8:頻數(shù)(率)分布直方圖;W2:加權(quán)平均數(shù);W4:中位數(shù)【分析】(1)根據(jù)30天的最高氣溫總和除以總天數(shù),即可得到這30天最高氣溫的平均數(shù),再根據(jù)第15和16個(gè)數(shù)據(jù)的位置,判斷中位數(shù);(2)根據(jù)30天中,最高氣溫超過(guò)(1)中平均數(shù)的天數(shù),即可估計(jì)這個(gè)季度中最高氣溫超過(guò)(1)中平均數(shù)的天數(shù);(3)從6天中任選2天,共有15種等可能的結(jié)果,其中兩天都在氣溫最高一組內(nèi)的情況有6種,據(jù)此可得這兩天都在氣溫最高一組內(nèi)的概率【解答】解:(1)這30天最高氣溫的平均數(shù)為: =20.4;中位數(shù)落在第三組內(nèi),中位數(shù)為22;(2)30天中,最高氣溫超過(guò)(1)中平均數(shù)的天數(shù)為16天,該地這個(gè)季度中最高氣溫超過(guò)(1)中平均數(shù)的天數(shù)為×90=48(天);(3)從6天中任選2天,共有15種等可能的結(jié)果,其中兩天都在氣溫最高一組內(nèi)的情況有6種,故這兩天都在氣溫最高一組內(nèi)的概率為=20某專(zhuān)賣(mài)店有A,B兩種商品,已知在打折前,買(mǎi)60件A商品和30件B商品用了1080元,買(mǎi)50件A商品和10件B商品用了840元,A,B兩種商品打相同折以后,某人買(mǎi)500件A商品和450件B商品一共比不打折少花1960元,計(jì)算打了多少折?【考點(diǎn)】9A:二元一次方程組的應(yīng)用【分析】設(shè)打折前A商品的單價(jià)為x元/件、B商品的單價(jià)為y元/件,根據(jù)“買(mǎi)60件A商品和30件B商品用了1080元,買(mǎi)50件A商品和10件B商品用了840元”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出x、y的值,再算出打折前購(gòu)買(mǎi)500件A商品和450件B商品所需錢(qián)數(shù),結(jié)合少花錢(qián)數(shù)即可求出折扣率【解答】解:設(shè)打折前A商品的單價(jià)為x元/件、B商品的單價(jià)為y元/件,根據(jù)題意得:,解得:,500×16+450×4=9800(元),=0.8答:打了八折21已知關(guān)于x的不等式x1(1)當(dāng)m=1時(shí),求該不等式的解集;(2)m取何值時(shí),該不等式有解,并求出解集【考點(diǎn)】C3:不等式的解集【分析】(1)把m=1代入不等式,求出解集即可;(2)不等式去分母,移項(xiàng)合并整理后,根據(jù)有解確定出m的范圍,進(jìn)而求出解集即可【解答】解:(1)當(dāng)m=1時(shí),不等式為1,去分母得:2xx2,解得:x2;(2)不等式去分母得:2mmxx2,移項(xiàng)合并得:(m+1)x2(m+1),當(dāng)m1時(shí),不等式有解,當(dāng)m1時(shí),不等式解集為x2;當(dāng)x1時(shí),不等式的解集為x222如圖,地面上小山的兩側(cè)有A,B兩地,為了測(cè)量A,B兩地的距離,讓一熱氣球從小山西側(cè)A地出發(fā)沿與AB成30°角的方向,以每分鐘40m的速度直線(xiàn)飛行,10分鐘后到達(dá)C處,此時(shí)熱氣球上的人測(cè)得CB與AB成70°角,請(qǐng)你用測(cè)得的數(shù)據(jù)求A,B兩地的距離AB長(zhǎng)(結(jié)果用含非特殊角的三角函數(shù)和根式表示即可)【考點(diǎn)】T8:解直角三角形的應(yīng)用【分析】過(guò)點(diǎn)C作CMAB交AB延長(zhǎng)線(xiàn)于點(diǎn)M,通過(guò)解直角ACM得到AM的長(zhǎng)度,通過(guò)解直角BCM得到BM的長(zhǎng)度,則AB=AMBM【解答】解:過(guò)點(diǎn)C作CMAB交AB延長(zhǎng)線(xiàn)于點(diǎn)M,由題意得:AC=40×10=400(米)在直角ACM中,A=30°,CM=AC=200米,AM=AC=200米在直角BCM中,tan20°=,BM=200tan20°,AB=AMBM=200200tan20°=200(tan20°),因此A,B兩地的距離AB長(zhǎng)為200(tan20°)米23已知反比例函數(shù)y=(k為常數(shù))(1)若點(diǎn)P1(,y1)和點(diǎn)P2(,y2)是該反比例函數(shù)圖象上的兩點(diǎn),試?yán)梅幢壤瘮?shù)的性質(zhì)比較y1和y2的大??;(2)設(shè)點(diǎn)P(m,n)(m0)是其圖象上的一點(diǎn),過(guò)點(diǎn)P作PMx軸于點(diǎn)M若tanPOM=2,PO=(O為坐標(biāo)原點(diǎn)),求k的值,并直接寫(xiě)出不等式kx+0的解集【考點(diǎn)】G6:反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征;T7:解直角三角形【分析】(1)先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限及其增減性,再根據(jù)P1、P2兩點(diǎn)的橫坐標(biāo)判斷出兩點(diǎn)所在的象限,故可得出結(jié)論(2)根據(jù)題意求得n=2m,根據(jù)勾股定理求得m=1,n=2,得到P(1,2),即可得到k21=2,即可求得k的值,然后分兩種情況借助反比例函數(shù)和正比例函數(shù)圖象即可求得【解答】解:(1)k210,反比例函數(shù)y=在每一個(gè)象限內(nèi)y隨x的增大而增大,0,y1y2;(2)點(diǎn)P(m,n)在反比例函數(shù)y=的圖象上,m0,n0,OM=m,PM=n,tanPOM=2,=2,n=2m,PO=,m2+(n)2=5,m=1,n=2,P(1,2),k21=2,解得k=±1,當(dāng)k=1時(shí),則不等式kx+0的解集為:x或0x;當(dāng)k=1時(shí),則不等式kx+0的解集為:x024如圖,點(diǎn)A,B,C,D是直徑為AB的O上的四個(gè)點(diǎn),C是劣弧的中點(diǎn),AC與BD交于點(diǎn)E(1)求證:DC2=CEAC;(2)若AE=2,EC=1,求證:AOD是正三角形;(3)在(2)的條件下,過(guò)點(diǎn)C作O的切線(xiàn),交AB的延長(zhǎng)線(xiàn)于點(diǎn)H,求ACH的面積【考點(diǎn)】MR:圓的綜合題【分析】(1)由圓周角定理得出DAC=CDB,證明ACDDCE,得出對(duì)應(yīng)邊成比例,即可得出結(jié)論;(2)求出DC=,連接OC、OD,如圖所示:證出BC=DC=,由圓周角定理得出ACB=90°,由勾股定理得出AB=2,得出OB=OC=OD=DC=BC=,證出OCD、OBC是正三角形,得出COD=BOC=OBC=60°,求出AOD=60°,即可得出結(jié)論;(3)由切線(xiàn)的性質(zhì)得出OCCH,求出H=30°,證出H=BAC,得出AC=CH=3,求出AH和高,由三角形面積公式即可得出答案【解答】(1)證明:C是劣弧的中點(diǎn),DAC=CDB,ACD=DCE,ACDDCE,=,DC2=CEAC;(2)證明:AE=2,EC=1,AC=3,DC2=CEAC=1×3=3,DC=,連接OC、OD,如圖所示:C是劣弧的中點(diǎn),OC平分DOB,BC=DC=,AB是O的直徑,ACB=90°,AB=2,OB=OC=OD=DC=BC=,OCD、OBC是正三角形,COD=BOC=OBC=60°,AOD=180°2×60°=60°,OA=OD,AOD是正三角形;(3)解:CH是O的切線(xiàn),OCCH,COH=60°,H=30°,BAC=90°60°=30°,H=BAC,AC=CH=3,AH=3,AH上的高為BCsin60°=,ACH的面積=×3×=25在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=ax2+bx+c與y軸交于點(diǎn)C,其頂點(diǎn)記為M,自變量x=1和x=5對(duì)應(yīng)的函數(shù)值相等若點(diǎn)M在直線(xiàn)l:y=12x+16上,點(diǎn)(3,4)在拋物線(xiàn)上(1)求該拋物線(xiàn)的解析式;(2)設(shè)y=ax2+bx+c對(duì)稱(chēng)軸右側(cè)x軸上方的圖象上任一點(diǎn)為P,在x軸上有一點(diǎn)A(,0),試比較銳角PCO與ACO的大?。ú槐刈C明),并寫(xiě)出相應(yīng)的P點(diǎn)橫坐標(biāo)x的取值范圍(3)直線(xiàn)l與拋物線(xiàn)另一交點(diǎn)記為B,Q為線(xiàn)段BM上一動(dòng)點(diǎn)(點(diǎn)Q不與M重合),設(shè)Q點(diǎn)坐標(biāo)為(t,n),過(guò)Q作QHx軸于點(diǎn)H,將以點(diǎn)Q,H,O,C為頂點(diǎn)的四邊形的面積S表示為t的函數(shù),標(biāo)出自變量t的取值范圍,并求出S可能取得的最大值【考點(diǎn)】HF:二次函數(shù)綜合題【分析】(1)根據(jù)已知條件得到拋物線(xiàn)的對(duì)稱(chēng)軸為x=2設(shè)拋物線(xiàn)的解析式為y=a(x2)28將(3,4)代入得拋物線(xiàn)的解析式為y=4(x2)28,即可得到結(jié)論;(2)由題意得:C(0,8),M(2,8),如圖,當(dāng)PCO=ACO時(shí),過(guò)P作PHy軸于H,設(shè)CP的延長(zhǎng)線(xiàn)交x軸于D,則ACD是等腰三角形,于是得到OD=OA=,根據(jù)相似三角形的性質(zhì)得到x=,過(guò)C作CEx軸交拋物線(xiàn)與E,則CE=4,設(shè)拋物線(xiàn)與x軸交于F,B,則B(2+,0),于是得到結(jié)論;(3)解方程組得到D(1,28得到Q(t,12t+16)(1t2),當(dāng)1t0時(shí),當(dāng)0t時(shí),當(dāng)t2時(shí),求得二次函數(shù)的解析式即可得到結(jié)論【解答】解:(1)自變量x=1和x=5對(duì)應(yīng)的函數(shù)值相等,拋物線(xiàn)的對(duì)稱(chēng)軸為x=2點(diǎn)M在直線(xiàn)l:y=12x+16上,yM=8設(shè)拋物線(xiàn)的解析式為y=a(x2)28將(3,4)代入得:a8=4,解得:a=4拋物線(xiàn)的解析式為y=4(x2)28,整理得:y=4x216x+8(2)由題意得:C(0,8),M(2,8),如圖,當(dāng)PCO=ACO時(shí),過(guò)P作PHy軸于H,設(shè)CP的延長(zhǎng)線(xiàn)交x軸于D,則ACD是等腰三角形,OD=OA=,P點(diǎn)的橫坐標(biāo)是x,P點(diǎn)的縱坐標(biāo)為4x216x+8,PHOD,CHPCOD,x=,過(guò)C作CEx軸交拋物線(xiàn)與E,則CE=4,設(shè)拋物線(xiàn)與x軸交于F,B,則B(2+,0),y=ax2+bx+c對(duì)稱(chēng)軸右側(cè)x軸上方的圖象上任一點(diǎn)為P,當(dāng)x=時(shí),PCO=ACO,當(dāng)2+x時(shí),PCOACO,當(dāng)x4時(shí),PCOACO;(3)解方程組,解得:,D(1,28),Q為線(xiàn)段BM上一動(dòng)點(diǎn)(點(diǎn)Q不與M重合),Q(t,12t+16)(1t2),當(dāng)1t0時(shí),S=(t)(12t+168)+8(t)=6t212t=6(t1)26,1t0,當(dāng)t=1時(shí),S最大=18;當(dāng)0t時(shí),S=t8+t(12t+16)=6t2+12t=6(t1)2+6,0t,當(dāng)t=1時(shí),S最大=6;當(dāng)t2時(shí),S=t8+(12t16)=6t24t=6(t)2,t2,此時(shí)S為最大值2017年7月9日https:/shop207885798.taobao.com/category.htm?spm=a1z10.1-c.w4010-16395402682.2.m7z0lQ&search=y