2018-2019版高中數(shù)學(xué) 第二章 隨機(jī)變量及其分布 2.1 離散型隨機(jī)變量及其分布列 2.1.2 離散型隨機(jī)變量的分布列(二)課件 新人教A版選修2-3.ppt
《2018-2019版高中數(shù)學(xué) 第二章 隨機(jī)變量及其分布 2.1 離散型隨機(jī)變量及其分布列 2.1.2 離散型隨機(jī)變量的分布列(二)課件 新人教A版選修2-3.ppt》由會員分享,可在線閱讀,更多相關(guān)《2018-2019版高中數(shù)學(xué) 第二章 隨機(jī)變量及其分布 2.1 離散型隨機(jī)變量及其分布列 2.1.2 離散型隨機(jī)變量的分布列(二)課件 新人教A版選修2-3.ppt(31頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2.1.2離散型隨機(jī)變量的分布列(二),第二章2.1離散型隨機(jī)變量及其分布列,學(xué)習(xí)目標(biāo)1.進(jìn)一步理解離散型隨機(jī)變量的分布列的求法、作用.2.理解兩點分布和超幾何分布.,問題導(dǎo)學(xué),達(dá)標(biāo)檢測,題型探究,內(nèi)容索引,問題導(dǎo)學(xué),隨機(jī)變量X的分布列為,知識點一兩點分布,若隨機(jī)變量X的分布列具有上表的形式,則稱X服從兩點分布,并稱p為成功概率.,P(X1),思考在含有5名男生的100名學(xué)生中,任選3人,求恰有2名男生的概率表達(dá)式.,知識點二超幾何分布,梳理一般地,在含有M件次品的N件產(chǎn)品中,任取n件,其中恰有X件次品,則P(Xk),k0,1,2,m,其中mminM,n,且nN,MN,n,M,NN*,稱分布列,為.如果隨機(jī)變量X的分布列為超幾何分布列,則稱隨機(jī)變量X服從.,超幾何分布列,超幾何分布,題型探究,例1(1)某運(yùn)動員射擊命中10環(huán)的概率為0.9,求他在一次射擊中命中10環(huán)的次數(shù)的分布列;,類型一兩點分布,解答,解設(shè)該運(yùn)動員射擊一次命中10環(huán)的次數(shù)為X,則P(X1)0.9,P(X0)10.90.1.,(2)若離散型隨機(jī)變量X的分布列為,解答,求出c,并說明X是否服從兩點分布,若是,則成功概率是多少?,反思與感悟兩步法判斷一個分布是否為兩點分布(1)看取值:隨機(jī)變量只取兩個值:0和1.(2)驗概率:檢驗P(X0)P(X1)1是否成立.如果一個分布滿足以上兩點,則該分布是兩點分布,否則不是兩點分布.,跟蹤訓(xùn)練1已知一批100件的待出廠產(chǎn)品中,有1件不合格品,現(xiàn)從中任意抽取2件進(jìn)行檢查,若用隨機(jī)變量X表示抽取的2件產(chǎn)品中的次品數(shù),求X的分布列.,解答,所以隨機(jī)變量X的分布列為,例2一個袋中裝有6個形狀、大小完全相同的小球,其中紅球有3個,編號為1,2,3;黑球有2個,編號為1,2;白球有1個,編號為1.現(xiàn)從袋中一次隨機(jī)抽取3個球.(1)求取出的3個球的顏色都不相同的概率;,類型二超幾何分布,解答,(2)記取得1號球的個數(shù)為隨機(jī)變量X,求隨機(jī)變量X的分布列.,解答,解由題意知X0,1,2,3.,所以X的分布列為,引申探究1.在本例條件下,若記取到白球的個數(shù)為隨機(jī)變量,求隨機(jī)變量的分布列.,解答,所以的分布列為,2.將本例的條件“一次隨機(jī)抽取3個球”改為“有放回地抽取3次球,每次抽取1個球”,其他條件不變,結(jié)果又如何?,解答,(2)由題意知X0,1,2,3.,所以X的分布列為,反思與感悟超幾何分布的求解步驟(1)辨模型:結(jié)合實際情景分析所求概率分布問題是否由具有明顯的兩部分組成,如“男生、女生”,“正品、次品”“優(yōu)劣”等,或可轉(zhuǎn)化為明顯的兩部分.具有該特征的概率模型為超幾何分布模型.(2)算概率:可以直接借助公式P(Xk)求解,也可以利用排列、組合及概率的知識求解,需注意借助公式求解時應(yīng)理解參數(shù)M,N,n,k的含義.(3)列分布表:把求得的概率值通過表格表示出來.,跟蹤訓(xùn)練2某市A,B兩所中學(xué)的學(xué)生組隊參加辯論賽,A中學(xué)推薦了3名男生、2名女生,B中學(xué)推薦了3名男生、4名女生,兩校所推薦的學(xué)生一起參加集訓(xùn).由于集訓(xùn)后隊員水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人、女生中隨機(jī)抽取3人組成代表隊.(1)求A中學(xué)至少有1名學(xué)生入選代表隊的概率;,解答,解由題意知,參加集訓(xùn)的男生、女生各有6人.,(2)某場比賽前,從代表隊的6名隊員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X的分布列.,解答,解根據(jù)題意,X的所有可能取值為1,2,3.,所以X的分布列為,達(dá)標(biāo)檢測,1.設(shè)某項試驗的成功率是失敗率的2倍,用隨機(jī)變量去表示1次試驗的成功次數(shù),則P(0)等于,答案,1,2,3,4,5,解析由題意知該分布為兩點分布,又P(1)2P(0)且P(1)P(0)1,,解析,答案,解析,2.已知在15個村莊中有7個村莊交通不方便,現(xiàn)從中任意選10個村莊,用X表示10個村莊中交通不方便的村莊數(shù),則下列概率中等于的是A.P(X2)B.P(X2)C.P(X4)D.P(X4),1,2,3,4,5,答案,解析,3.若隨機(jī)變量X服從兩點分布,且P(X0)0.8,P(X1)0.2.令Y3X2,則P(Y2)等于A.0.8B.0.2C.0.4D.0.1,1,2,3,4,5,當(dāng)Y2時,X0,所以P(Y2)P(X0)0.8.,答案,解析,4.從4名男生和2名女生中任選3人參加數(shù)學(xué)競賽,則所選3人中,女生的人數(shù)不超過1人的概率為_.,解析設(shè)所選女生數(shù)為隨機(jī)變量X,則X服從超幾何分布,,1,2,3,4,5,解答,5.交5元錢,可以參加一次摸獎,一袋中有同樣大小的球10個,其中8個標(biāo)有1元錢,2個標(biāo)有5元錢,摸獎?wù)咧荒軓闹腥稳?個球,他所得獎勵是所抽2球的錢數(shù)之和,求抽獎人所得錢數(shù)的分布列.,1,2,3,4,5,解設(shè)抽獎人所得錢數(shù)為隨機(jī)變量,則2,6,10.,1,2,3,4,5,故的分布列為,1.兩點分布:兩點分布是很簡單的一種概率分布,兩點分布的試驗結(jié)果只有兩種可能,要注意成功概率的值指的是哪一個量.2.超幾何分布:超幾何分布在實際生產(chǎn)中常用來檢驗產(chǎn)品的次品數(shù),只要知道N,M和n就可以根據(jù)公式:P(Xk)求出X取不同值k時的概率.學(xué)習(xí)時,不能機(jī)械地去記憶公式,而要結(jié)合條件以及組合知識理解M,N,n,k的含義.,規(guī)律與方法,- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018-2019版高中數(shù)學(xué) 第二章 隨機(jī)變量及其分布 2.1 離散型隨機(jī)變量及其分布列 2.1.2 離散型隨機(jī)變量的分布列二課件 新人教A版選修2-3 2018 2019 高中數(shù)學(xué) 第二 隨機(jī)變量
鏈接地址:http://m.appdesigncorp.com/p-12700792.html