購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
國外幾種典型液壓錘液壓系統(tǒng)及性能比較
打樁錘的歷史可追溯到15世紀(jì),人們利用繩索吊起重物進行打樁。如今液壓打樁錘已經(jīng)廣泛應(yīng)用于橋梁、建筑、港口和碼頭等預(yù)制樁的基礎(chǔ)施工作業(yè),和傳統(tǒng)的柴油打樁錘相比,液壓打樁錘具有打樁效率高、無廢氣排放、噪聲低、可調(diào)節(jié)打擊能量、適應(yīng)范圍廣等特點還可以用于水下打樁以及打斜樁等。
按照錘頭的下落方式,液壓錘可分為單作用液壓錘和雙作用液壓錘。單作用液壓錘即樁錘在自重作用下以自由落體方式下落。雙作用液壓錘即樁錘在自重和液壓氣動等外力的共同作用下以大于自由落體加速度下落。按照樁錘的噸位,液壓錘可分為大型、中型和小型3種,樁錘重量3t以下的為小型液壓錘;樁錘重量在3~10t之間的為中型液壓錘;樁錘重量超過10t的為大型液壓錘。小型液壓錘適用于截面尺寸較小的鋼樁和混凝土樁;中大型液壓錘適用于港口碼頭、高層建筑、橋梁等工程的樁基施工。國外已經(jīng)形成液壓錘系列化產(chǎn)品,以滿足各種基礎(chǔ)施工的需要。近年來,國內(nèi)樁工機械行業(yè)陸續(xù)展開液壓錘的研究和開發(fā)工作,但大噸位、高性能的液壓錘還不多,無法滿足日益增長的工程需求。為此,國內(nèi)基礎(chǔ)施工中較多地采用了國外液壓錘。本文主要比較分析國外幾種典型液壓錘的液壓系統(tǒng)、特點和性能。
1 典型液壓打樁錘液壓系統(tǒng)
1.1 英國BSP單作用液壓錘
圖1為英國BSP公司生產(chǎn)的一種單作用液壓錘。樁錘上升階段,電磁卸荷閥9通電,左位工作。電液比例閥10起溢流閥作用,調(diào)定液壓系統(tǒng)工作壓力。電磁換向閥3斷電,上位接通,高壓蓄能器4和變量泵1的出口油流進先導(dǎo)控制閥6控制缸的左、右兩腔,先導(dǎo)控制閥6主閥的左位工作。此時,電磁換向閥7通電,左位工作,高壓油通過換向閥7的左位流入油缸5的下腔。變量泵1和高壓蓄能器4同時供油,活塞桿加速上升。液壓缸5上腔的壓力油經(jīng)過先導(dǎo)控制閥6流入低壓蓄能器8,經(jīng)單向閥回油箱。低壓蓄能器8吸收回油,減小壓力波動。樁錘下降階段,電磁換向閥3通電,下位工作,液壓油進入先導(dǎo)控制閥6控制缸的右腔,使得先導(dǎo)控制閥6主閥的右位工作。液壓缸5下腔的液壓油則通過換向閥7的左位、先導(dǎo)控制閥6的大腔以及電磁換向閥3的下位,進入液壓缸5的上腔,與液壓泵一起向油缸上腔聯(lián)合供油,錘體在重力作用下自由下落。樁錘沖擊樁頭動作完成之后,進入保壓階段。保壓結(jié)束后電磁換向閥9通電,開始新的工作循環(huán)。
1.2 芬蘭JUNTTAN單作用液壓錘
圖2為芬蘭JUNTTAN公司生產(chǎn)的一種單作用液壓錘。樁錘上升階段,電磁換向閥6上位工作,主換向閥7下位工作。此時變量泵1和高壓蓄能器5同時向液壓缸8下腔供油,活塞桿加速上升并帶動錘頭上升。液壓缸8上腔液壓油流進低壓蓄能器9回油箱。樁錘下降階段即為當(dāng)樁錘到達系統(tǒng)設(shè)定的高度時,電磁換向閥6下位工作,此時控制主換向閥7上位工作,高壓油流入液壓缸8的上腔,形成差動回路,樁錘加速下落。樁錘保壓階段,為防止樁的反彈,樁錘在樁上停留很短的一段時間,即保壓時間。保壓結(jié)束后,電磁換向閥6動作使主換向閥7換向,樁錘開始上升,開始新的循環(huán)。樁錘停止工作時,溢流閥2、卸荷閥4均打開與油箱連通,來自變量泵1的壓力油直接流回油箱,液壓缸8的上、下腔相連接,壓力相等,活塞停至液壓缸8最低端位置。
1.3 荷蘭IHC雙作用液壓錘
荷蘭IHC公司推出了一種雙作用液壓錘(圖3)。樁錘上升階段,電磁換向閥7閉合,電磁換向閥5斷開,液壓泵9和高壓蓄能器8同時向油缸下腔供油,錘頭1抬起。此時氮氣室6的氣體被壓縮而儲存能量。樁錘下降階段,電磁換向閥7斷開,電磁換向閥5閉合,樁錘開始下降。氮氣室高壓氮氣釋放儲存能量,樁錘在自重和氮氣室6雙重作用下加速下降撞擊樁體,完成打擊作用。樁錘下降同時,液壓泵9向高壓蓄能器8供給液壓油。由于回油管路較長,低壓蓄能器4吸收液壓錘排出的液壓油以保證樁錘加速下降。當(dāng)兩個電磁換向閥都在閉合位置時,液壓油回油箱,液壓系統(tǒng)卸載。
2 打擊頻率與打擊能量比較
1)打擊頻率 液壓打樁錘的打擊頻率取決于樁錘各階段的工作時間。工作時間越短,打擊頻率越高。由于液壓打樁錘下落加速度一般都設(shè)計在一個重力加速度或以上,下落時間很短,打擊頻率主要取決于上升時間。單作用液壓錘上升過程中,液壓泵和高壓蓄能器同時供油,上升速度快,打擊頻率較高;雙作用液壓錘在樁錘上升時,液壓泵同時向油缸和高壓蓄能器供油,樁錘上升較慢,打擊頻率較低。荷蘭IHC推出的S型雙作用液壓錘以及芬蘭JUNTTAN生產(chǎn)的HHKA型單作用液壓錘在上升階段,液壓泵和高壓蓄能器同時向液壓缸下腔供油,具有較高的打擊頻率,達到60次/min。
2) 打擊能量 打擊能量與錘體自重、上升高度、液壓缸上腔油液(或是氣體)的壓力以及打擊加速度的大小等參數(shù)有關(guān)。單作用液壓錘打樁時油缸上腔為低壓腔,與回油路相連,主要靠自重以近似自由落體方式打擊樁體,打擊能量較低。雙作用液壓錘依靠液壓力或氣動力加上錘體自重,一般打擊能量較大。表1為幾種典型液壓錘主要性能比較
3結(jié)論
通過比較國外幾種典型液壓打樁錘,可知英國BSP的CGL370型和荷蘭IHC的S型系列液壓錘打擊頻率較高,芬蘭JUNTTAN的HHKA型液壓錘打擊頻率較低。
荷蘭IHC的S型和芬蘭JUNTTAN的HHKA型液壓打樁錘都具有較高打擊能量,且可調(diào)節(jié)的范圍很大,英國BSP的CGL370系列為單作用方式液壓打樁錘,打擊能量較低,可調(diào)范圍有限。
荷蘭IHC的S型液壓錘的液壓系統(tǒng)簡單,結(jié)構(gòu)緊湊,其他公司的液壓錘液壓系統(tǒng)相對復(fù)雜。IHC液壓錘油缸設(shè)有氮氣室,調(diào)節(jié)壓力從而調(diào)節(jié)打擊能量,最大打擊加速度可達2g,適合于大噸位打樁作業(yè)。
Comparison of hydraulic system and performance of several typical hydraulic hammer abroad
Hammer's history can be traced back to fifteenth Century, people use the rope to lift a weight of piling. Today, hydraulic pile hammer has been widely used in bridges, buildings, ports and terminals, such as precast pile foundation construction operations, and conventional diesel pile hammer compared, hydraulic piling hammer with pile driving high efficiency, no waste gas emission, low noise, adjustable blow energy, adapt to a wide range of characteristics can also be used for under water piling and beveling pile.
According to the whereabouts of hammer, hydraulic hammer can be divided into single and double acting hydraulic hammer hydraulic hammer. Single acting hydraulic pile hammer hammer falling by a free falling under gravity. Double acting hydraulic pile hammer hammer under gravity and hydraulic pneumatic force combined with the greater acceleration of free fall drop. According to the tonnage of the pile hammer, hydraulic hammer can be divided into large, medium and small three, below the pile hammer weight 3T for small hydraulic hammer, the hammer weight between 3 ~ 10t for medium-sized hydraulic hammer; hammer weight is more than 10t for large hydraulic hammer. Small hydraulic hammer is suitable for steel piles and concrete piles with smaller section size. The large hydraulic hammer is suitable for pile foundation construction of port, high-rise building and Bridge etc.. Has formed a series of hydraulic hammer products, in order to meet the needs of various basic construction. In recent years, the domestic pile industry machinery industry has started the research and development of hydraulic hammer, but the large tonnage, high performance hydraulic hammer is not much, can not meet the growing demand for engineering. Therefore, the domestic basic construction uses the foreign hydraulic hammer frequently. This paper mainly analyzes the hydraulic system, features and performance of several typical hydraulic hammer abroad..
1 typical hydraulic piling hammer hydraulic system
1.1British BSP single acting hydraulic hammer
A single - acting hydraulic hammer for the production of BSP, UK. The stage of the rise of the pile hammer, the electromagnetic unloading valve 9 power, the left position. Electro-hydraulic proportional valve 10 overflow valve role, setting hydraulic system working pressure. Solenoid valve 3 power off, the upper connected, high pressure accumulator 1 and variable pump outlet oil flow into the pilot control valve 6 control cylinder left and right two chamber, pilot control valve 6 main valve left position. At this point, the solenoid valve 7 power, the left position, the valve through the valve 7 of the left into the cavity of the cylinder 5. Variable pump 4 and high pressure accumulator 1 at the same time, the piston rod to accelerate the rise. Hydraulic cylinder 5 pressure oil through the pilot valve 6 into the low pressure accumulator 8, the check valve back to the tank. Low pressure accumulator 8 absorbs oil back and reduces pressure fluctuation.. The lower phase of the hammer, the solenoid valve 3 power, the lower position, hydraulic oil into the pilot control valve 6 control cylinder right chamber, so that the pilot control valve 6 main valve right position. Hydraulic oil of the hydraulic cylinder 5 inferior vena is through the reversing valve 7 left, pilot control valve cavity and an electromagnetic reversing valve 3 and lower into the hydraulic cylinder 5 of the chamber, and a hydraulic pump together to the upper chamber of oil cylinder with oil, a hammer body under the action of gravity free fall. After the hammer impact pile head is finished, the pressure is entered into the holding phase.. After the end of the pressure of the solenoid valve 9 power, starting a new working cycle.
1.2 Finland JUNTTAN single acting hydraulic hammer
A single acting hydraulic hammer for JUNTTAN production in Finland. The rise of the pile hammer, the solenoid valve 6, the main valve 7 lower position. The 1 variable pump and high pressure accumulator and hydraulic cylinder 5 to 8 lower fuel, accelerating piston rod and drive the hammer up. Hydraulic cylinder 8 the upper chamber hydraulic oil flow into the low-pressure accumulator 9 return to the fuel tank. Pile hammer falling stage is when the pile hammer arrived to set up the system of high, electromagnetic reversing valve 6 lower, then the control main reversing valve 7 upper work, high pressure oil into hydraulic cylinder 8 of the chamber, forming a differential circuit, the pile hammer acceleration whereabouts. The holding period of the hammer is to prevent the rebound of the piles, and the pile hammer is short for a short period of time.. After the end of the pressure, the solenoid valve 6 action to the main valve 7 commutation, the pile hammer began to rise, starting a new cycle. Pile hammer stops working, relief valve 2, unloading valve bearing 4 were opening is communicated with the oil tank, from variable pump 1 direct pressure oil flows back to the oil tank, hydraulic cylinder 8, inferior vena connected, equal pressure, the piston to stop hydraulic cylinder 8 the lowest end position.
1.3 Holland IHC double acting hydraulic hammer
Holland IHC Corporation introduced a double acting hydraulic hammer (Figure 3). The rising phase of the pile hammer, the electromagnetic reversing valve closed, electromagnetic reversing valve 5 is disconnected, the hydraulic pump and high pressure storage energy device at the same time to supply the cylinder cavity, hammer head 1 lift. At this point the gas of the nitrogen chamber 6 is compressed and stored energy. The decline of the hammer, the solenoid valve 7 open, the solenoid valve 5 closed, the pile hammer began to fall. Nitrogen chamber high pressure nitrogen release the storage energy, the pile hammer in the weight and nitrogen chamber 6 under the dual role of the impact of the acceleration of the impact of the pile, the completion of the blow. The hydraulic pump 9 supplies hydraulic oil to the high pressure accumulator 8 while the hammer is falling.. Due to the long back oil pipeline, the low pressure accumulator 4 can absorb hydraulic oil from the hydraulic hammer to ensure the acceleration of the pile hammer.. When the two solenoid valve are in the position of the hydraulic oil back to the tank, hydraulic system unloading.
2 Comparison between strike frequency and strike energy
1) the frequency of the hammer against the frequency of the hydraulic hammer is determined by the working hours of the hammer stages.. The shorter working hours, the higher the frequency of the fight. As the hydraulic piling hammer drop acceleration are generally designed in a gravity acceleration or above, the whereabouts of the time is very short, the fight frequency mainly depends on the rise time. Rise process of the single action hydraulic hammer, hydraulic pump and high pressure storage can also supply, rising fast, against high frequency; double acting hydraulic hammer pile hammer to rise, the hydraulic pump and oil to the oil cylinder and the high-pressure storage oil supply device, slower rise pile hammer against low frequency. IHC Hydrohammer launched s type double acting hydraulic hammer and Finland JUNTTAN production of the the HHKA single acting hydraulic hammer during the rising phase, hydraulic pump and high pressure storage can also to the hydraulic cylinder cavity oil, with high attack frequency, up to 60 times per minute.
2) the fight against the energy and the weight of the hammer, the height of the pressure, the pressure of the oil fluid (or the gas) and the size of the acceleration.. Single acting hydraulic pile hammer cylinder cavity for the low pressure chamber, and the return oil line connected, depends mainly on the weight in order to approximate the free falling body fight pile, fight lower energy. Double acting hydraulic hammer relies on hydraulic pressure or pneumatic power with the weight of the hammer, which generally strikes energy.. Table 1 main performance comparison of several typical hydraulic hammer
3 conclusions
Through the comparison of several typical foreign hydraulic pile hammer, BSP shows that British CGL370 type and the Netherlands IHC s series hydraulic hammer blow frequency is higher, the Finnish JUNTTAN of the HHKA hydraulic hammer blow frequency is low.
Piling hammer hydraulic, IHC Holland type s and Finland JUNTTAN of of the HHKA has higher impact energy, and adjustable scope of the great British BSP series of CGL370 for single action hydraulic pile hammer, strike energy is low, limited the scope of regulation.
The hydraulic system of the S hydraulic hammer in Holland IHC is simple and the structure is compact, and the hydraulic hammer hydraulic system of other companies is relatively complex.. IHC hydraulic hammer cylinder with nitrogen chamber, adjust the pressure to adjust the blow energy, the maximum strike acceleration of up to 2G, suitable for large tonnage piling operation.
刀銼銑床液壓系統(tǒng)的設(shè)計
第一章緒論
第二章 工況分析與方案選擇
2.1技術(shù)要求
2.2工況分析
2.3工作負(fù)載
第三章液壓系統(tǒng)
3.1 擬定液壓系統(tǒng)原理圖
3.2組成液壓系統(tǒng)
3.3系統(tǒng)液壓元件、輔件設(shè)計
第四章 刀銼銑床液壓系統(tǒng)中液壓缸的設(shè)計
4.1液壓缸的設(shè)計
4.2液壓缸主要尺寸的確定
4.3液壓缸的結(jié)構(gòu)設(shè)計
結(jié)論
文獻
摘要:液壓系統(tǒng)是以電機提供動力基礎(chǔ),使用液壓泵將機械能轉(zhuǎn)化為壓力,推動液壓油。通過控制各種閥門改變液壓油的流向,從而推動液壓缸做出不同行程、不同方向的動作。完成各種設(shè)備不同的動作需要。液壓系統(tǒng)已經(jīng)在各個工業(yè)部門及農(nóng)林牧漁等許多部門得到愈來愈廣泛的應(yīng)用,而且愈先進的設(shè)備,其應(yīng)用液壓系統(tǒng)的部分就愈多。
關(guān)鍵詞:液壓傳動、穩(wěn)定性、液壓系統(tǒng)
第一章緒論
1.1銑床概述
銑床是用銑刀對工件進行銑削加工的機床。銑床除能銑削平面、溝槽、輪齒、螺紋和花鍵軸外,還能加工比較復(fù)雜的型面,效率較刨床高,在機械制造和修理部門得到廣泛應(yīng)用。
1.2液壓技術(shù)發(fā)展趨勢
液壓技術(shù)是實現(xiàn)現(xiàn)代化傳動與控制的關(guān)鍵技術(shù)之一,世界各國對液壓工業(yè)的發(fā)展都給予很大重視。液壓氣動技術(shù)具有獨特的優(yōu)點,如:液壓技術(shù)具有功率重量比大,體積小,頻響高,壓力、流量可控性好,可柔性傳送動力,易實現(xiàn)直線運動等優(yōu)點;氣動傳動具有節(jié)能、無污染、低成本、安全可靠、結(jié)構(gòu)簡單等優(yōu)點,并易與微電子、電氣技術(shù)相結(jié)合,形成自動控制系統(tǒng)。主要發(fā)展趨勢如下:1.減少損耗,充分利用能量2.泄漏控制3.污染控制4.主動維護
第二章 工況分析與方案選擇
2.1技術(shù)要求
刀銼銑床采用缸筒固定的液壓缸驅(qū)動工作臺,臥式布置,,完成工件銑削加工時的進給運動;工件采用機械方式夾緊。工作臺由液壓與電氣配合實現(xiàn)的自動循環(huán)要求為:快進—→工進—→快退—→停止。工作臺除了機動外,還能實現(xiàn)手動。刀銼銑床工作臺的運動參數(shù)和動力參數(shù)如表一所列。
表一 刀銼銑床工作臺的運動參數(shù)和動力參數(shù)
工況
行程
(mm)
速度
(m/s)
時間
t(s)
運動部件重力G(N)
銑削負(fù)載Fe(N)
啟動、制動t(s)
快速
300
0.075
t1
5500
-
0.05
4
工進
100
0.016~0.001
t2
9000
6.25~10
快退
400
0.075
t3
-
5.33
2.2工況分析
工作臺液壓缸外負(fù)載計算結(jié)果見表二
表二 工作臺液壓缸外負(fù)載計算結(jié)果
工 況
計算公式
外負(fù)載(N)
注:靜摩擦負(fù)載:
Ffs=μs(G+Fn)=0.2×(5500+0)=1100(N)
動摩擦負(fù)載:
Ffd=μd(G+Fn)=0.1×(5500+0)=550(N)
慣性負(fù)載:Ffd+G/g×△v/△t=5500×0.075/(9.81×0.05)=840(N).
△v/△t:平均加速度(m/s2).
啟 動
F1=Ffs
1100
加 速
F2=Ffd+G/g×△v/△t
1390
快 進
F3=Ffd
550
工 進
F4=Fe+Ffd
9550
反向啟動
F5=Ffs
1100
加 速
F6=Ffd+G/g×△v/△t
1390
快 退
F7=Ffd
550
由表一和表二即可繪制出圖一所示液壓缸的行程特性(L-t)圖、速度特性(v-t)圖和負(fù)載特性(F-t)圖。
圖一 液壓缸的L-t圖、v-t圖和F-t圖
(2)確定主要參數(shù),編制工況圖
由參考文獻一,初選液壓缸的設(shè)計壓力P1=3MPa.
為了滿足工作臺進退速度相等,并減小液壓泵的流量,今將液壓缸的無桿腔作為主工作腔,并在快進時差動連接,則液壓缸無桿腔的有效面積A1 與A2應(yīng)滿足A1=2A2(即液壓缸內(nèi)徑D和活塞桿直徑d間應(yīng)滿足:D=d.)
為防止工進結(jié)束時發(fā)生前沖,液壓缸需保持一定回油背壓。由參考文獻一,暫取背壓為0.8MPa,并取液壓缸機械效率ηcm=0.9,則可計算出液壓缸無桿腔的有效面積。
液壓缸內(nèi)徑:
按GB/T2348-1980,取標(biāo)準(zhǔn)值D=80mm=8cm,因A1=2A2,故活塞桿直徑為
則液壓缸的實際有效面積為
差動連接快進時,液壓缸有桿腔壓力P2必須大于無桿腔壓力P1;其差值估取△P= P2- P1=0.5MPa,并注意到啟動瞬間液壓缸尚未移動,此時△P=0;另外,取快退時的回油壓力損失為0.5MPa。
根據(jù)上述假定條件經(jīng)計算得到液壓缸工作循環(huán)中各階段的壓力、流量和功率,并可繪出其工況圖(圖二)。
表三 液壓缸工作循環(huán)中各階段的壓力、流量和功率
工作階段
計算公式
負(fù)載
F(N)
回油腔壓力
P2(MPa)
工作腔壓力
P1(MPa)
輸入流量
q(L/mm)
輸入功率
N(W)
快進
啟動
1100
-
0.48
-
-
加速
1390
0.5
1.12
-
-
恒速
550
0.5
0.74
10.8
133.2
工進
9550
0.8
2.52
0.3~4.98
12.6~202
快退
啟動
1100
-
0.49
-
-
加速
1390
0.5
1.62
-
-
恒速
550
0.5
1.24
10.8
232.5
圖二 液壓缸的工況圖
2.3工作負(fù)載
摩擦阻力
慣性負(fù)荷
查液壓缸的機械效率,可計算出液壓缸在各工作階段的負(fù)載情況,如下表表1所示:
表1 液壓缸各階段的負(fù)載情況
工 況
負(fù)載計算公式
液壓缸負(fù)載
液壓缸推力/N
啟 動
1100
1222.22
加 速
1390.98
1545.53
快 進
550
611.11
工 進
3960.46
4400.51
快 退
550
611.11
第三章 液壓系統(tǒng)
3.1 擬定液壓系統(tǒng)原理圖
1) 選擇液壓回路
①調(diào)速回路與動力源
由工況圖可以看到,液壓系統(tǒng)在快速進退階段,負(fù)載壓力較低,流量較大,且持續(xù)時間較短;而系統(tǒng)在工進階段,負(fù)載壓力較高、流量較小,持續(xù)時間較長。同時注意到銑削加工過程中銑削里的變化和順銑及逆銑兩種情況,為此,采用回油路調(diào)速閥節(jié)流調(diào)速回路。
這樣,可以保證進給運動平穩(wěn)性和速度穩(wěn)定。在確定主要參數(shù)時,已決定快速進給時液壓缸采用差動連接,所以所需動力源的流量較小,從簡單經(jīng)濟學(xué)觀點,此處選用單定量泵供油。
②油路循環(huán)方式
由于上已選用節(jié)流調(diào)速回路,系統(tǒng)必然為開式循環(huán)方式。
③換向與速度換接回路
綜合考慮到銑床自動化程度要求較高、但工作臺終點位置的定位精度要求不高、工作臺可機動也可手動、系統(tǒng)壓力低流量小、工作臺換向過渡位置不應(yīng)出現(xiàn)液壓沖擊等因素,選用三位四通“Y”型中位機能的電磁滑閥作為系統(tǒng)的主換向閥。選用二位三通電磁換向閥實現(xiàn)差動連接。通過電氣行程開關(guān)控制換向閥電磁鐵的通斷電即可實現(xiàn)自動換向和速度換接。
④壓力控制回路
在泵出口并聯(lián)一先導(dǎo)式溢流閥,實現(xiàn)系統(tǒng)的定壓溢流,同時在溢流閥的遠程控制口連接一個二位二通的電磁換向閥,以便一個工作循環(huán)結(jié)束后,等待裝卸工件時,液壓泵卸載,并便于液壓泵空載下迅速啟動。
3.2組成液壓系統(tǒng)
在主回路初步選定的基礎(chǔ)上,只要增添一些必要的輔助回路便可組成完整的液壓系統(tǒng)了。如:在液壓泵進口(吸油口)設(shè)置一過濾器;出口設(shè)一壓力表及壓力表開關(guān),以便觀測液壓泵的壓力。經(jīng)過整理所組成的液壓系統(tǒng)如圖三所示,其對應(yīng)的動作順序如表四。
圖三刀銼銑床工作臺液壓系統(tǒng)
1—過濾器 2—定量葉片泵 3—壓力表開關(guān) 5—先導(dǎo)式溢流閥
6—二位二通電磁換向閥 7—單向閥 8—三位四通電磁換向閥
9—單向調(diào)速閥 10—二位三通電磁換向閥 11—液壓缸
表四刀銼銑床液壓系統(tǒng)動作順序表
信 號 來 源
動 作 名 稱
電磁鐵工作狀態(tài)
1YA
2YA
3YA
4YA
按下啟動按鈕
工作臺快進
+
-
+
+
壓下工進行程開關(guān)
工作臺工進
+
-
-
+
壓下快退行程開關(guān)
工作臺快退
-
+
-
+
壓下液壓泵卸載行程開關(guān)
液壓泵卸載
-
-
-
-
注:“+”——通電;“-”——斷電。行程開關(guān)安裝在液壓缸經(jīng)過的路徑上。
快進回路:進油:1→2→7→8→11;回油:10→8。
工進回路:進油:1→2→7→8→11;回油:10→9→8→油箱。
快退回路:進油:1→2→7→9→10;回油:11→8→油箱。
卸載:1→2→5→6→油箱。
3.3系統(tǒng)液壓元件、輔件設(shè)計
(1)液壓泵及其驅(qū)動電機
由液壓缸的工況圖二或表三可以查得液壓缸的最高工作壓力出現(xiàn)在工進階段,p1=2.52MPa。此時缸的輸入流量較小,且進油路元件較少,故泵至缸間的進油路壓力損失估取為△p=0.5MPa.則液壓泵的最高工作壓力pp為
Pp≥p1+△p=2.52+0.5=3.02(MPa)
考慮壓力儲備,液壓泵的最高壓力為
Pp =3.02(1+25%)=3.77(MPa)
液壓泵的最大供油量qp按液壓缸的最大輸入流量(10.8L/mm)進行估算。取泄露系數(shù)K=1.1,則
qp≥1.1×10.8L/min=11.88L/min
按第七章表7-108查得:YB1-10型單級葉片泵能滿足上述估算得出的壓力和流量要求:該泵的額定壓力為6.3MPa,公稱排量V=10mL/min,額定轉(zhuǎn)速為n=1450r/min?,F(xiàn)估取泵的容積效率ηv=0.85,當(dāng)選用轉(zhuǎn)速n=1400r/min的驅(qū)動電動機時,泵的流量為
qp =Vnηv=10×1400×0.85=11.90(L/min)≈12(L/min)
由工況圖二可知,最大功率出現(xiàn)在快退階段,查表1-13取泵的總效率為ηp=0.75,則
選用的電動機型號:由參考文獻一表7-134查得,Y90S-4型封閉式三相異步電動機滿足上述要求,其轉(zhuǎn)速為1400r/min,額定功率為1.1kW。
根據(jù)所選擇的液壓泵規(guī)格及系統(tǒng)工作情況,可算出液壓缸在各階段的實際進、出流量,運動速度和持續(xù)時間(見表五),從而為其他液壓元件的選擇及系統(tǒng)的性能計算奠定基礎(chǔ)。
(2)液壓控制閥和部分液壓輔助元件
根據(jù)系統(tǒng)工作壓力與通過各液壓控制閥及部分輔助元件的最大流量,查產(chǎn)品樣本所選擇的元件型號規(guī)格如表六所列。
表五 液壓缸在各階段的實際進出流量、運動速度和持續(xù)時間
工作階段
流量(L/min)
速度(m/s)
時間(s)
無桿腔
有桿腔
快 進
工
進
最高速度時
最低速度時
快 退
注:工進階段只計算了調(diào)速上限時的參數(shù)。
表六刀銼銑床液壓系統(tǒng)中控制閥和部分輔助元件的型號規(guī)格
序 號
名 稱
通過流量
(L/min)
額定流量
(L/min)
額定壓力
(Mpa)
額定壓降
(Mpa)
型號規(guī)格
1
過濾器
12
16
1
-
XU-A16×80J
3
壓力表開關(guān)
12
-
6.3
-
K-3B
4
壓力表
-
-
測壓范圍
0~10
-
Y-60
5
溢流閥
12
25
6.3
卸荷壓力0.15
Y-25B
6
二位二通電磁閥
2.4
10
6.3
<0.2
22D-10BH
7
單向閥
12
6.3
25
<0.2
I-25B
8
三位四通電磁閥
24
6.3
25
<0.25
34D-25B
9
單向調(diào)速閥
12
6.3
25
<0.3(調(diào)速閥)
<0.2(單向閥)
QI-25B
10
二位三通電磁閥
12
6.3
25
<0.2
23D-25H
注:考慮到液壓系統(tǒng)的最大壓力均小于6.3Mpa,故選用了廣州機床研究所的中低壓系列液壓元件;單向調(diào)速閥的最小穩(wěn)定流量為0.07L/min,小于系統(tǒng)最低工進速度時的流量0.15 L/min。
(3)其他輔助元件及液壓油液
1)管件
由表五可知,流經(jīng)液壓缸無桿腔和有桿腔油管的實際最大流量分別為24 L/min和12 L/min。查表取油管內(nèi)油液的允許流速為4 L/min,分別算得無桿腔油管的管徑d無和d有為
查表JB827-66,同時考慮制作方便,兩根油管均選用18×2(外徑18mm,壁厚2mm)的10號冷拔無縫鋼管(YB231-70);查手冊得管材的抗拉強度為
412MPa,查表取安全系數(shù)n=8,對管子的強度進行校核:
所選的管子壁厚安全。
其他油管,可直接按所連接的液壓元、輔件的接口尺寸決定其管徑大小。
2) 油箱
取ζ=6,算得液壓系統(tǒng)中的油箱容量為
3)液壓油液
根據(jù)所選用的液壓泵類型,選用牌號為L-HH32的油液,其運動粘度為32mm2/s。
4計算液壓系統(tǒng)技術(shù)性能
(1) 驗算壓力損失
由于本系統(tǒng)的管路布局尚未確定,故僅按式:
估算閥類元件的壓力損失。
快進階段液壓缸差動連接,有桿腔的油液經(jīng)二位三通換向閥流入無桿腔,根據(jù)表三和表五中的數(shù)值,可求得有桿腔壓力p2與無桿腔p1之差:
將其折算到進油路上,可求得此階段進油路上閥類元件的總壓力損失為:
工進階段進油路上閥類元件的總壓力損失:
快退階段進油路上閥類元件的總壓力損失:
盡管上述計算結(jié)果與估取值不同,但不會是系統(tǒng)工作壓力超過其能達到的最高壓力。
(2) 確定系統(tǒng)調(diào)整壓力
根據(jù)上述計算可知:液壓泵也即溢流閥的調(diào)整壓力應(yīng)為工進階段的系統(tǒng)工作壓力和壓力損失之和,即
(3) 估算系統(tǒng)效率、發(fā)熱和升溫
由表五的數(shù)據(jù)可看到,本液壓系統(tǒng)在整個工作循環(huán)持續(xù)時間中,快速進退僅占8%,而工作進給達92%(按最低進給速度計),所以系統(tǒng)效率、發(fā)熱和溫升可概略用工進時的數(shù)值來代表。
可算出工進階段的回路效率
前已取液壓泵的總效率ηp=0.75和液壓缸的總效率ηcm=ηA=0.9,則可算得本液壓系統(tǒng)的效率
足見工進時液壓系統(tǒng)效率很低,這主要是由于溢流損失和節(jié)流損失造成的。
根據(jù)系統(tǒng)的發(fā)熱量計算公式可得工進階段的發(fā)熱功率
取散熱系數(shù)K=15W/(m·℃)算得系統(tǒng)溫升為
此溫升超出了許用范圍△t=35℃,為此,采取兩條措施:通過適當(dāng)加大油箱容量(即V=7×12=84L)以增大油箱散熱面積,采用風(fēng)扇冷卻[即取K=20W/(m2·℃)]。
從而滿足了許用溫升要求。
第四章 刀銼銑床液壓系統(tǒng)中液壓缸的設(shè)計
4.1液壓缸的設(shè)計
根據(jù)前面設(shè)計可知數(shù)據(jù):
1. 液壓缸的工作壓力:p=3Mpa。
2. 無桿腔有效面積:
3. 有桿腔有效面積:
,
其中:。
4. 液壓缸內(nèi)徑:D=70mm,活塞桿直徑d=56mm.其中。
5. 工作行程:L=400mm。
6. 工作循環(huán)中最大外負(fù)載:F=9550N。
4.2液壓缸主要尺寸的確定
1.缸工作壓力的確定:
取p=3Mpa。
2.液壓缸內(nèi)徑D和活塞桿直徑d的確定
為了防止工進結(jié)束時發(fā)生前沖,液壓缸需保持一定回油背壓,暫取背壓為0.8Mpa,并取機械效率為ηcm=0.9。
D=70mm, d=56mm, 其中。
對于選定后的液壓缸內(nèi)徑D,必須進行最小穩(wěn)定速度的驗算。要保證液壓缸節(jié)流腔的有效工作面積A,必須大于保證最小穩(wěn)定速度的最小有效面積Amin,即A>Amin
顯然,由已知可得滿足速度穩(wěn)定要求。
3.液壓缸壁厚和外徑的計算:
由公式:δ≥PyD/2[σ]計算。
式中:δ——液壓缸壁厚(m);
σ——液壓缸內(nèi)徑(m);
Py——試驗壓力,一般取最大工作壓力的(1.25~1.5)倍(Mpa);
[σ]——缸筒材料的許用應(yīng)力。在這用高強度鑄鐵,其值為:[σ]=60Mpa.
計算可得:δ=2.63 (取Py=1.5p=4.5Mpa).
則缸體的外徑D1為:
D1≥D+2δ=75.3
4.液壓缸工作行程的確定
已知:L=400mm.
5.缸蓋厚度的確定
前缸蓋:
后缸蓋:
式中:t——缸蓋有效厚度(m);
D2——缸蓋止口內(nèi)徑(m);
D0——缸蓋孔的直徑(m)。
6.最小導(dǎo)向長度的確定
當(dāng)活塞桿全部外伸時,從活塞支承面中點到缸蓋滑動支承面中點的距離H稱為最小導(dǎo)向長度。如果導(dǎo)向長度過小,將使液壓缸的初始撓度增大,影響液壓缸的穩(wěn)定性,因此設(shè)計時必須保證有一定的最小導(dǎo)向長度。按下式:
式中:L——液壓缸的最大行程;
D——液壓缸的內(nèi)徑。
圖四 液壓缸的導(dǎo)向長度
活塞的寬度B一般?。海?.6~1.0)D;缸蓋滑動支承面的長度,根據(jù)液壓缸內(nèi)徑D而定:
當(dāng)D<80mm時,取=(0.6~1.0)D;
當(dāng)D>80mm時,取=(0.6~1.0)d.
為保證最小導(dǎo)向長度H,若過分增大和B都是不適合的,必要時可在缸蓋與活塞之間增加一隔套K來增加H的值.隔套的長度C由需要的最小導(dǎo)向長度H決定,即
取=0.8D=56mm,B=0.6D=42mm則:C=7
7.缸體長度的確定
液壓缸缸體內(nèi)部長度應(yīng)等于活塞的行程與活塞的寬度之和。缸體外形長度還要考慮到兩端蓋的厚度,一般液壓缸缸體長度不應(yīng)大于內(nèi)徑的20~30倍。而缸體長度為:
L2=D+t=70+7.7=77.7
顯然,滿足所需條件。
8.活塞桿穩(wěn)定性的驗算
活塞桿長度根據(jù)液壓缸最大行程L而定。對于工作行程中受壓的活塞桿,當(dāng)活塞桿長度L與其直徑d之比大于15時,應(yīng)對活塞桿進行穩(wěn)定性驗算。而L/d=400/56=7.14<15?;钊麠U穩(wěn)定性好。
4.3液壓缸的結(jié)構(gòu)設(shè)計
1.缸體與缸蓋的連接形式
一般來說,缸筒和缸蓋的結(jié)構(gòu)形式和其使用的材料有關(guān)。工作壓力p<10MPa時,使用鑄鐵;p<20MPa時,使用無縫鋼管;p>20MPa時,使用鑄鋼或鍛鋼。
如圖所示為缸筒和缸蓋的常見結(jié)構(gòu)形式。圖五(a)所示為法蘭連接式,結(jié)構(gòu)簡單,容易加工,也容易裝拆,但外形尺寸和重量都較大,常用于鑄鐵制的缸筒上。圖五(b)所示為半環(huán)連接式,它的缸筒壁部因開了環(huán)形槽而削弱了強度,為此有時要加厚缸壁,它容易加工和裝拆,重量較輕,常用于無縫鋼管或鍛鋼制的缸筒上。圖五(c)所示為螺紋連接式,它的缸筒端部結(jié)構(gòu)復(fù)雜,外徑加工時要求保證內(nèi)外徑同心,裝拆要使用專用工具,它的外形尺寸和重量都較小,常用于無縫鋼管或鑄鋼制的缸筒上。圖五(d)所示為拉桿連接式,結(jié)構(gòu)的通用性大,容易加工和裝拆,但外形尺寸較大,且較重。圖五(e)所示為焊接連接式,結(jié)構(gòu)簡單,尺寸小,但缸底處內(nèi)徑不易加工,且可能引起變形。
圖五 缸筒和缸蓋結(jié)構(gòu)
(a)法蘭連接式(b)半環(huán)連接式(c)螺紋連接式(d)拉桿連接式(e)焊接連接式
1—缸蓋2—缸筒3—壓板4—半環(huán)5—防松螺帽6—拉桿
在此使用鑄鐵,選用法蘭連接。
2.活塞桿與活塞的連接結(jié)構(gòu)
可以把短行程的液壓缸的活塞桿與活塞做成一體,這是最簡單的形式。但當(dāng)行程較長時,這種整體式活塞組件的加工較費事,所以常把活塞與活塞桿分開制造,然后再連接成一體。圖六所示為幾種常見的活塞與活塞桿的連接形式。
圖六(a)所示為活塞與活塞桿之間采用螺母連接,它適用負(fù)載較小,受力無沖擊的液壓缸中。螺紋連接雖然結(jié)構(gòu)簡單,安裝方便可靠,但在活塞桿上車螺紋將削弱其強度。圖六(b)和(c)所示為卡環(huán)式連接方式。圖六(b)中活塞桿5上開有一個環(huán)形槽,槽內(nèi)裝有兩個半圓環(huán)3以夾緊活塞4,半環(huán)3由軸套2套住,而軸套2的軸向位置用彈簧卡圈1來固定。圖六(c)中的活塞桿,使用了兩個半圓環(huán)4,它們分別由兩個密封圈座2套住,半圓形的活塞3安放在密封圈座的中間。圖六(d)所示是一種徑向銷式連接結(jié)構(gòu),用錐銷1把活塞2固連在活塞桿3上。這種連接方式特別適用于雙出桿式活塞。
圖六 常見的活塞組件結(jié)構(gòu)形式
3.活塞桿導(dǎo)向部分的結(jié)構(gòu)
選用導(dǎo)向套導(dǎo)向。因?qū)蛱啄p后便于更換,應(yīng)用普遍。
4.活塞及活塞桿處密封圈的選用
圖七 密封裝置
(a)間隙密封(b)摩擦環(huán)密封(c)O形圈密封(d)V形圈密封
圖七(a)所示為間隙密封,它依靠運動間的微小間隙來防止泄漏。為了提高這種裝置的密封能力,常在活塞的表面上制出幾條細小的環(huán)形槽,以增大油液通過間隙時的阻力。它的結(jié)構(gòu)簡單,摩擦阻力小,可耐高溫,但泄漏大,加工要求高,磨損后無法恢復(fù)原有能力,只有在尺寸較小、壓力較低、相對運動速度較高的缸筒和活塞間使用。圖七(b)所示為摩擦環(huán)密封,它依靠套在活塞上的摩擦環(huán)(尼龍或其他高分子材料制成)在O形密封圈彈力作用下貼緊缸壁而防止泄漏。這種材料效果較好,摩擦阻力較小且穩(wěn)定,可耐高溫,磨損后有自動補償能力,但加工要求高,裝拆較不便,適用于缸筒和活塞之間的密封。圖七(c)、圖七(d)所示為密封圈(O形圈、V形圈等)密封,它利用橡膠或塑料的彈性使各種截面的環(huán)形圈貼緊在靜、動配合面之間來防止泄漏。它結(jié)構(gòu)簡單,制造方便,磨損后有自動補償能力,性能可靠,在缸筒和活塞之間、缸蓋和活塞桿之間、活塞和活塞桿之間、缸筒和缸蓋之間都能使用。
對于活塞桿外伸部分來說,由于它很容易把臟物帶入液壓缸,使油液受污染,使密封件磨損,因此常需在活塞桿密封處增添防塵圈,并放在向著活塞桿外伸的一端。
在此選O形圈加擋圈密封。
5.液壓缸的緩沖裝置
緩沖裝置的工作原理是利用活塞或缸筒在其走向行程終端時封住活塞和缸蓋之間的部分油液,強迫它從小孔或細縫中擠出,以產(chǎn)生很大的阻力,使工作部件受到制動,逐漸減慢運動速度,達到避免活塞和缸蓋相互撞擊的目的。
在此選三角槽式節(jié)流緩沖裝置。見參考文獻一圖2-4。
活塞5的兩端開有三角槽,前后缸蓋3、8上的鋼球7起單向閥的作用。當(dāng)活塞啟動時,壓力油頂開鋼球進入液壓缸,推動活塞運動。當(dāng)活塞接近缸的端部時,回油路被活塞逐漸封閉,使液壓缸油只能通過活塞上軸向的三角槽緩慢排出,形成緩沖液壓阻力。節(jié)流口的通流面積隨活塞的移動而逐漸減小,活塞運動速度逐漸減慢,實現(xiàn)制動緩沖。
6.液壓缸的排氣裝置
液壓缸在安裝過程中或長時間停放重新工作時,液壓缸里和管道系統(tǒng)中會滲入空氣,為了防止執(zhí)行元件出現(xiàn)爬行,噪聲和發(fā)熱等不正?,F(xiàn)象,需把缸中和系統(tǒng)中的空氣排出。一般可在液壓缸的最高處設(shè)置進出油口把氣帶走,也可在最高處設(shè)置如圖八(a)所示的放氣孔或?qū)iT的放氣閥〔見圖八(b)、(c)〕。
圖八 放氣裝置
1—缸蓋2—放氣小孔3—缸體4—活塞桿
7.液壓缸的安裝連接結(jié)構(gòu)
1).液壓缸的安裝形式(見參考文獻一圖2-13)
選尾部外法蘭連接形式。
2).液壓缸進、出油口形式及大小的確定(見參考書一表2-14)
知進、出油口安裝尺寸為:M27×2。
3).液壓缸用耳環(huán)安裝結(jié)構(gòu)(見參考文獻一表2-15)
采用帶軸套的單耳環(huán)結(jié)構(gòu)。
4).桿用單耳環(huán)國際標(biāo)準(zhǔn)安裝尺寸(見參考書一表2-16)
具體參數(shù)如下:
型號
活塞桿直徑
缸筒內(nèi)徑
公稱力(N)
ΦKK
CK(H9)
EM(H13)
ER(max)
CA(Js13)
AW(min)
LE(min)
60
70
160
320000
M48×2
56
70
59
126
63
63
結(jié)論
畢業(yè)設(shè)計是對我們大學(xué)學(xué)習(xí)的一次綜合性的檢測,它是我們走向社會前的一次實踐。設(shè)計到此全部完成,歷時五個月。通過此次設(shè)計,對液壓系統(tǒng)有了較深層次的理解與詮釋。本次設(shè)計的是刀銼銑床的液壓系統(tǒng),同時對其液壓缸也進行了設(shè)計。掌握了一般的設(shè)計理論和方法,能夠設(shè)計刀銼銑床液壓系統(tǒng)。但由于經(jīng)驗不夠豐富,其中也存在很多不足之處,懇請老師指正。
參考文獻:
1、《液壓系統(tǒng)設(shè)計簡明手冊》,楊培元、朱福元主編,機械工業(yè)出版社。
2、《液壓傳動系統(tǒng)》第三版,官忠范主編,機械工業(yè)出版社。
3、《液壓傳動設(shè)計手冊》,煤炭工業(yè)部、煤炭科學(xué)研究院上海研究所主編,上海科學(xué)技術(shù)出版社。
4、《袖珍液壓氣動手冊》第二版,劉新德主編,機械工業(yè)出版社。
5、《液壓傳動課程設(shè)計指導(dǎo)書》,高等工程??茖W(xué)校機制及液壓教學(xué)研究會液壓組主編。
6、《液壓傳動與氣壓傳動》第二版,何存興、張鐵華主編,華中科技大學(xué)出版社。
7、《金屬鉆削機床液壓傳動》,章宏甲主編,江蘇科學(xué)技術(shù)出版社。
8、《工程機械液壓與液力傳動》,李芳民主編,人民交通出版社。
9、《新編液壓工程手冊》,雷天覺主編,北京理工大學(xué)出版社。
10、《液壓系統(tǒng)設(shè)計圖集》,周士昌主編,機械工業(yè)出版社。