加水蓋注射模具設(shè)計【一模四腔】【說明書+CAD】
購買設(shè)計請充值后下載,資源目錄下的文件所見即所得,都可以點開預(yù)覽,資料完整,充值下載可得到資源目錄里的所有文件。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
徐州師范大學(xué)本科生畢業(yè)設(shè)計 加熱缸體注塑模設(shè)計翻譯原文一:Design of Small Core DrawingMechanism for Injection MouldWu Guang ming (Dongguan Science and Technical School, of Guang Dong province Dongguan 523000)Abstract: Four kinds of small and nimble core drawing mechanism for injection mould of case type plastic items are introduced in details.Key words: injection mould, core drawing, sliding blockCase type plastic items play an important role in the production of modern plastic-electronic items. In general, knots sometimes together with a bolt are used to enhancer and smooth the surface of the electronic products. A mould often holds several work pieces, and core drawing is used many times in just one work piece. If we use traditional outside slanting pillar or inside slanting slide block in core drawing, the mechanism of the mould would be very complicated. In practice, Figure 11. moving die insert 2. moving die pate 3. spring 4. core slide block5. fixed die insert 6. fixed die plate 7. lock insert block 8. center pin 9. spring 10.fixed plate of moving die according to the property that the stroke of core drawing of plastic items is very short, several kinds of core drawing mechanisms are designed as follows.1 Outside core drawing mechanismOutside core drawing mechanism as in Fig.1 is similar to traditional slanting pillar core drawing mechanism, Because of the short stroke of core drawing, slanting pillar is removed. Lock insert block 7 and core slide block 4 serve together to accomplish the action of reset and lock. When the mould is opened, moving die and fixed die are parted and core slide block 4 finishes core drawing under control of spring 3. Center pin 8 is used to locate the core slide block. Core slide block 4 has T guide way machined to ensure the accuracy of core drawing movement.Figure 21. moving die insert 2. center pin 3. core slide block 4. fixed die insert 5. lock insert 6. fixed die plate 7. spring 8. moving die plate 2 Inside core drawing mechanism Slanting slide block detached core drawing or drawing or slanting thimble are often used in traditional inside core drawing mechanisms. It is hard to machine. Because the distance of friction movement of slanting slide pole is long, and friction device is hidden in the middle of the mould, it is difficult to lubricate and the slanting slide pole tends to be easily worn down. Slanting slide block inside drawing mechanism in Fig.2 solves this problem well. When the dies are closed, core slide block 3 resets under the influence of lock insert 5. When the dies are opened, block 3 and lock insert 5 is parted and block 3 finishes core drawing under control of spring 7. Center pin 2 is used to locate the core slide block. The whole mechanism is dependent and easy to machine.3 Compound mechanism that core draws inside and outside at the same timeWhen a mould holds several different work-pieces and has to be core drawn inside and outside at the same time, compound core drawing mechanism illustrated in Fi.3 can be used. The picture shows the state when the dies are closed. The Figure 31.moving die insert 2.spring 3. outside core insert 4. fixed die insert 5.fixed die plate 6. lock insert 7. fixed die insert 8. moving die insert 9.inside core insert 10. core slide block 11. center pin 12. moving die plate slants of lock insert 6 and core slide block 10 cooperate to reset and lock the core. When the dies are opened, core slide block 10 finishes inside and outside core drawing at the same time under control of spring 2. The position is limited by center pin 11. To make the core easily machined and conveniently maintained, the core can be made to be assembled. When two different cases need core drawing outside at the same time, compound mechanism in Fig.4 can be used. With the use of two slanting insert blocks, the mechanism is simplified, and the strength condition on lock insert is greatly improved.4 A simplified core drawing mechanismFor outside core drawing whole mould space is not so large, a simplified mechanism as shown in Fig.5 can be used. When the dies are closed, slanting slide block 3 oppresses spring 6 and resets under the influence of fixed die insert 1.Figure 41. moving die insert 2. fixed die plate 3. spring 4. moving die plate5. spring 6. core slide block 7. fixed die insert 8. fixed die plate9. lock insert 10. fixed die insert 11. core slide block 12.spring 13.spring 14.moving die insert Two guide pins 5 serve to guide. When the dies are opened, moving die insert 1 is parted from moving plate 4 and slanting slide block 3 slides up along guide pin 5 to finish core drawing under influence of spring 6. Core drawing is accomplished in one instant so that the time of opening mould is shortened and the productivity is improved. This kind of core drawing mechanism can be changed to be used for fixed mould core drawing.It has been proved by practice that core drawing mechanisms illustrated above are simple and dependent. We are easy to maintain and the production costs are greatly reduced. But in practice we must check the elasticity of springs from time to time in case they are out of use. Figure 51. fixed die insert 2. moving die insert 3. slanting slide block 4. moving die plate 5. guide pin 6. spring 7. blotReferences1馮炳堯等.模具設(shè)計與制造簡明手冊.上海:上??茖W(xué)技術(shù)出版社,1985 2 塑料模具設(shè)計手冊編寫組.塑料模具設(shè)計手冊.北京:機械工業(yè)出版社,1982譯文一:注射模小型抽芯機構(gòu)的設(shè)計吳光明東莞理工學(xué)校(廣東東莞 52300) 摘要: 介紹了外殼類塑件注射模設(shè)計生產(chǎn)中,行程較短抽芯的幾種簡單、靈巧的抽芯機構(gòu),可為類似塑件的注射模設(shè)計提供幫助。關(guān)鍵詞: 注射模 抽芯 滑塊在塑膠電子產(chǎn)品的生產(chǎn)中,外殼類塑件的批量較大。前殼和后殼一般采用扣位加螺釘?shù)穆?lián)接方式,以使電子產(chǎn)品外觀光滑美觀。一個面殼注射模經(jīng)常是因有多處扣位而需要抽芯。而1副模具中通常是1模幾件。若采用傳統(tǒng)的斜導(dǎo)柱外側(cè)抽芯和斜滑塊內(nèi)側(cè)抽芯,將會使模具結(jié)構(gòu)十分復(fù)雜。生產(chǎn)中根據(jù)殼類塑件扣位抽芯行程很短的特點,設(shè)計了如下所述的幾種常用的、簡單靈巧的抽芯結(jié)構(gòu)。1 簡單的外側(cè)抽芯機構(gòu)如圖1所示的外側(cè)抽芯機構(gòu)與傳統(tǒng)的斜導(dǎo)柱抽芯機構(gòu)相類似,只是由于抽芯行程很短,故減去斜導(dǎo)柱,只是靠鎖緊楔塊4和型芯滑塊5的斜面配合來完成滑塊的復(fù)位和鎖緊。開模時,動定模分開,型芯滑塊5在彈簧6的作用下完成抽芯動作。定位銷釘7起定位作用。型芯滑塊5上加工有T型導(dǎo)軌以保證抽芯運動精度。 圖1 外側(cè)抽芯機構(gòu)1定模型芯 2動模型芯 3定模板 4鎖緊楔塊 5型芯滑塊6彈簧 7定位銷釘 8彈簧 9動模扳10動模固定板2 簡單的內(nèi)側(cè)抽芯機構(gòu)傳統(tǒng)的內(nèi)側(cè)抽芯機構(gòu)多采用斜滑塊內(nèi)側(cè)分型抽芯或斜滑桿頂出機構(gòu)。加工復(fù)雜,斜滑桿磨擦運動距離長,磨擦機構(gòu)藏于模具中央,難以潤滑,斜滑桿易磨損。圖2所示的斜滑塊內(nèi)側(cè)抽芯機構(gòu)較好地解決了這個問題。合模時,型芯滑塊6在鎖緊楔塊5的作用下復(fù)位。開模時型芯滑塊6和鎖緊楔塊5分開,型芯滑塊6在彈簧8的作用下完成抽芯動作。定位銷釘2起定位作用。整個機構(gòu)抽芯動作可靠,加工簡單。 圖2 內(nèi)側(cè)抽芯機構(gòu)1動模固定板2定位銷釘3動模型芯 4定模型芯5鎖緊楔塊 6型芯滑塊 7定模板 8彈簧 9動模板圖內(nèi)、外側(cè)同時抽芯的復(fù)合機構(gòu) 1動模型芯2定位銷釘3型芯滑塊4定模型芯 5鎖緊楔塊6定模型芯7型芯鑲塊8彈簧9動模型芯 3 內(nèi)、外側(cè)同時抽芯的復(fù)合機構(gòu)對于1模有幾腔不同塑件,而又同時有內(nèi)、外側(cè)抽芯時,可采用如圖 , 所示的復(fù)合抽芯機構(gòu),圖3為合模狀態(tài)。鎖緊楔塊5的斜面和型芯滑塊3的斜面配合,起到使型芯復(fù)位和鎖緊的作用。開模時,型芯滑塊3在彈簧8作用下同時完成內(nèi)、外側(cè)的抽芯動作,定位銷釘2起限位作用。為使型芯加工簡單,維修方便,可將型芯部分做成鑲拼結(jié)構(gòu)。4 簡單的彈簧抽芯機構(gòu)如圖4所示為一種簡單的定模彈簧抽芯機構(gòu)。開模后,處分型,滾輪6離開滑動型芯5,5在彈簧4的作用下完成抽芯動作。需要特別指出的是,由于是定模抽芯,故動模型芯2需設(shè)計成延時開模,以避免拉壞塑件,如果是動模抽芯,則將滾輪固定機構(gòu)放在定模來完成抽芯動作。合模時,滾輪壓迫滑動型芯復(fù)位并鎖緊,這種抽芯機構(gòu)十分簡單,加工方便,但鎖緊力不大,且需經(jīng)常檢查彈簧的彈性。圖彈簧抽芯機構(gòu)1定模型芯 2動模型芯 3固定板 4彈簧5滑動型芯 6滾輪 7動模板5 一種簡易的內(nèi)置抽芯機構(gòu)對于模具空間位置較小的外側(cè)抽芯,可采用如圖5所示的簡易抽芯機構(gòu)。合模時,在定模鑲塊1的作用下,斜滑塊3壓迫彈簧6并復(fù)位,兩個導(dǎo)向銷釘5起導(dǎo)向作用。開模時1、7分開,斜滑塊3在彈簧6的作用下,沿導(dǎo)向銷釘5上行完成抽芯。抽芯動作瞬間完成,縮短了開模時間,提高了生產(chǎn)效率。此種抽芯機構(gòu)經(jīng)適當(dāng)變化也可用于定模抽芯。圖 簡易內(nèi)置抽芯機構(gòu)1定模型芯 2動模型芯 3斜滑塊 4彈簧5導(dǎo)向銷釘 6螺釘 7動模板經(jīng)生產(chǎn)實踐證明,采用了上述幾種抽芯機構(gòu)的模具,結(jié)構(gòu)簡單,動作運行可靠,維修調(diào)試方便,有效降低了生產(chǎn)成本。參考文獻1馮炳堯等.模具設(shè)計與制造簡明手冊.上海:上海科學(xué)技術(shù)出版社,1985.2 塑料模具設(shè)計手冊編寫組.塑料模具設(shè)計手冊.北京:機械工業(yè)出版社,1982.翻譯原文二:Die Life and Die FailureProper selection of the de material and of the die manufacturing technique determines, to a large extent, the useful life of forming des. Dies may have to be replaced for a number of reasons, such as changes n dimensions due to wear or plastic deformation, deterioration of the surface finish, breakdown of lubrication, and cracking or breakage. In hot impression die forging, the principal modes of die failure are erosion, thermal fatigue, mechanical fatigue and permanent (plastic) deformation.In erosion, also commonly called die wear, material is actually removed from the die surface by pressure and sliding of the deforming material, wear resistance of the die material, die surface temperature, relative sliding speed at the die/material interface and the nature of the interface layer are the most significant factors influencing abrasive die wear. Thermal fatigue occurs on the surface of the die impression in hot forming and results in “heat checking”. Thermal fatigue results from cyclic yelling of the de surface due to contact with the hot deforming material. This contact causes the surface layers to expend, and, because of the very steep temperature gradients, the surface layers are subject to compressive stresses. At sufficiently high temperatures, these compressive stresses may cause the surface layers to deform. When the de surface cools, a stress reversal may occur and the surface layers will then be n tension. After repeated cycling in this manner, fatigue will cause formation of a crack pattern that s recognized as heat checking. Die breakage or cracking is due to mechanical fatigue and occurs in cases where the dies are overloaded and local stresses are high. The dies are subject to alternating stresses due to loading and unloading during the deformation process and this causes crack initiation and eventual failure. Die life and de failure are greatly affected by the mechanical properties of the die materials under the conditions that exist in a given deformation process. Generally, the properties that are most significant depend on the process temperature. Thus, die materials used in cold forming processes are quite different from those used in hot forming.The design and manufacture of dies and the selection of die materials are very important in the production of discrete parts by use of metal forming processes. The dies must be made by modern manufacturing methods from appropriate die materials in order to provide acceptable die life at a reasonable cost. Often the economy success of a forming process depends on die life and de costs per piece produced. For a given application, selection of the appropriate die material depends on three types of variables:(a)Variables related to the process itself, including factors such as size of the die cavity, type of machine used and deformation speed, initial stock size and temperature, die temperature to be use, lubrication, production rata and number of parts to be produced.(b)Variables related to the type of die loading, including speed of loading, i.e. impact of gradual contact time between dies and deforming metal (this contact time is especially important in hot forming), maximum load and pressure on the dies, maximum and minimum die temperatures, and number of loading cycles to which the dies will be subjected.(c)Mechanical properties of the die material, including harden ability, impact strength, hot strength(if hot forming is considered)and resistance to thermal and mechanical fatigue.譯文二:模具的壽命與失效正確的選擇模具材料和模具的制造技術(shù),在很大程度上決定著成形模具的使用壽命。為著某些原因,模具可能不得不更換。例如,由于磨損或塑性變性而使尺寸發(fā)生改變、表面損壞、光潔度降低、潤滑故障和裂紋即破裂。在熱壓模緞中,模具失效的主要模式是腐蝕作用、熱疲勞、機械疲勞和永久性即塑性變形。腐蝕,通常也叫做模具磨損,實際上模具由于受到壓力后模具表面上的材料發(fā)生剝落。變形材料的滑移、模具材料的抗磨性,模具表面溫度、模具和材料接觸表面的相對滑動速度以及接觸層的性質(zhì),都是影響模具磨損的最主要的因素。熱成形加工中會發(fā)生熱裂效應(yīng),熱疲勞都發(fā)生在模具模腔的表面。由于跟熱變形材料接觸,就在周期性屈服的模具表面引起了熱疲勞。由于溫度梯度的急劇變化,這種接觸引起的表面層的膨脹,而且表面層受到壓應(yīng)力的影響。在溫度足夠高的時刻,這些壓應(yīng)力可引起表面層的破壞。當(dāng)模具表面冷卻時,可發(fā)生反向應(yīng)力,因而表面層將處于拉應(yīng)力狀態(tài)。這種狀態(tài)循環(huán)往復(fù)將引起形成龜裂的模面,那就是作為識別熱裂紋的特征。模具破裂或產(chǎn)生裂紋是由于機械疲勞,并且是在模具過載和局部應(yīng)力高等情況下發(fā)生的。在變形加工過程中,由于加載、減載、模具承受交變應(yīng)力作用,這就將引起開裂并發(fā)生重大破壞。在給定的成形工藝條件下,模具材料的機械性能對模具壽命和模具的損壞影響很大。一般而言,最具影響的性能是取決于加工過程的溫度。這樣,用于冷卻盛開加工工藝的模具材料與用于熱成形加工的材料有著極大的區(qū)別。對于金屬成形加工工藝的小批、單件生產(chǎn),模具的設(shè)計、制造和模具材料的選擇是非常重要的。為著提供成本合理和具有令人滿意的壽命的模具,必須用合適的模具材料和用現(xiàn)代的制造方法來制造模具。成形加工的經(jīng)濟效益常常是取決于模具壽命和所制造的每件模具的成本。根據(jù)上述應(yīng)用,合適的模具材料的選擇取決于以下三個方面的因素:(a)與加工工藝本身有關(guān)的因素,包括模腔尺寸、所用機器形式和變形速度,毛坯尺寸和溫度,要用的模具溫度、潤滑、生產(chǎn)率和要生產(chǎn)的零件數(shù)量。(b)與模具加載形式相關(guān)的因素,包括加載速度,即模具與正在變形的金屬之間的沖擊時間或逐漸接觸的時間(在熱變形加工中,這種接觸時間顯得特別重要),在模具上的最大載荷和壓力,最大和最小的模具溫度以及模具將要承受的加載周期的數(shù)目。(c)模具材料的機械性能,包括硬度、沖擊強度、熱強度(如果考慮成形加工的話)和機械疲勞的性能。- 13-湖南工學(xué)院畢業(yè)設(shè)計 計 算 內(nèi) 容說 明 第一部分 塑件的分析一、塑件的使用要求耐用,耐磨,可以承受較大的沖擊力,不易摔壞;好看,有光澤表面較光滑;化學(xué)性質(zhì)穩(wěn)定,可以耐高溫(一般低于100oC),耐化學(xué)腐蝕。 二、塑件的材料選擇及其材料的介紹根據(jù)塑件的用途及其使用要求,選用ABS塑料。ABS的介紹:1.名稱 中文名:丙烯腈-丁二烯-苯乙烯共聚物英文名:Acrylonitrile-Butadiene-Styrene copolymer2.基本特性 無毒無味,呈微黃色,成型的塑件有較好的密度在1.021.05g/cm3,其收縮率為0.30.8%。ABS 吸濕性很強成型前需要充分干燥,要求含水量小于0.3%。流動性一般,溢料間隙約在0.04mm。ABS有極好的抗沖擊強度,且在低溫下也 計 算 內(nèi) 容說 明不迅速下降。有良好的機械強度和一定的耐磨性、耐性、耐油性、耐水性、化學(xué)穩(wěn)定性和電氣性能。 3.成型特點 ABS在升溫時粘度增高,所以成型壓力較高,塑料上的脫模斜度宜稍大;易產(chǎn)生熔接痕,模具設(shè)計時應(yīng)注意盡量減小澆注系統(tǒng)對料流的阻力;在正常的成型條件下,壁厚、熔料溫度及收縮率影響極小。要求塑件精度高時,模具溫度可控制在5060oC,要求塑件光澤和耐熱時,應(yīng)控制在6080 oC。4.主要技術(shù)指標比容:0.860.98cm3/g。 熔點:130160oC吸水性:0.20.4% (24h)熱變形溫度:4.6105Pa- 90108oC 18.0105Pa- 83103oC屈服強度: 50MPa 拉伸彈性模量:1.8GPa 抗彎強度:80MPa 計 算 內(nèi) 容說 明5.ABS的注射工藝參數(shù)注射機類型: 螺桿式螺桿轉(zhuǎn)速(r/min): 3060 噴嘴形式: 直通式 噴嘴溫度(oC): 180190 料筒溫度(oC): 前 200210 中 210230 后 180200模溫(oC): 5070注射壓力(MPa): 7090保壓力(MPa): 5070注射時間(s): 35保壓時間(s): 1530冷卻時間(s): 1530成型周期(s): 4070 計 算 內(nèi) 容說 明三、 塑件的形狀及其尺寸塑件的工作條件對精度要求較低,根據(jù)ABS的性能可選擇其塑件的精度等級為5級精度(查閱塑料成型工藝與模具設(shè)計P66表3-8)。經(jīng)計算得塑件的底面積為:S塑=2827.433mm2得塑件的體積為:V塑=13.619cm3塑件的質(zhì)量為:W塑 =V塑r塑=13.7(g)。塑件圖 計 算 內(nèi) 容說 明第二部分 分型面的選擇分型面為定模與動模的分界面。合理地選擇分型面是使塑件能完好的成形的先決條件。一、分型面的選擇原則1.使塑件在開模后留在有動模上;2.分型面的痕跡不影響塑件的外觀;3.澆注系統(tǒng),特別是澆口能合理的安排;4.使推桿痕跡不露在塑件外觀表面上;5.使塑件易于脫模。二、分型面的設(shè)計 如下圖所示:分型面圖 計 算 內(nèi) 容說 明 第三部分 型腔數(shù)目的決定及排布已知的體積V塑或質(zhì)量W塑 ,又因為此產(chǎn)品屬大批量生產(chǎn)的小型塑件,綜合考慮生產(chǎn)率和生產(chǎn)成本等各種因素,初步確定采用一模四腔對稱性排布。排布圖如下圖示: 型腔數(shù)目及排布圖 計 算 內(nèi) 容說 明第四部分 注射機的初步選擇一、注射量的計算:Q=4x13.7=54.8 (g)二、初步選擇:XS-ZY-125型注射機三、XS-ZY-125型注射機的主要參數(shù)額定注射量(cm3): 125螺桿直徑 (mm): 42注射壓力 (MPa): 120注射行程(mm): 115注射時間(s) : 1.6注射方式 : 螺桿式合模力 kN : 900最大注射面積(cm2): 320最大開(合)模行程(mm): 300模具最大厚度(mm): 300模具最小厚度(mm): 200噴嘴圓弧半徑(mm): 12噴嘴孔徑(mm): 4 計 算 內(nèi) 容說 明第五部分 澆注系統(tǒng)的設(shè)計 澆注系統(tǒng)的設(shè)計是注射模設(shè)計的一個重要環(huán)節(jié),它對注射成形周期和塑件質(zhì)量(如外觀,物理性能,尺寸精度等)都直接影響。一、設(shè)計時須遵循如下原則1.結(jié)合型腔布局考慮;2.熱量及壓力損失要小;3.確定均衡進料;4.塑料耗量要少;5.消除冷料;6.排氣良好。二、澆注系統(tǒng)的組成普通流道澆注系統(tǒng)一般由主流道,分流道,澆口和冷料穴等四部分組成。三、澆注系統(tǒng)設(shè)計為使塑件去掉澆口方便,并結(jié)合物料特性,以及塑件的形狀,以采用點澆口為宜。1.主流道尺寸 根據(jù)該塑件體積及表3-10,可得體積流率Q=(13.7x4)/1.635cm3/s,取主流道中熔體流動rs=5x103s-1,由圖 計 算 內(nèi) 容說 明3-56r-Q-Rn關(guān)系曲線圖,可得Rn=2mm,故得主流道大端尺寸D=2Rn=4mm,小端尺寸由注射機噴嘴尺寸,取d=4mm,SR=12+2=14mm。主流道的形狀和尺寸如圖所示:.澆口套圖 2.分流道尺寸 為使四澆口能同時進料,各分流道按平衡式布置,故熔體在各分流道中的流速Q(mào)R=35/4=8.5cm3/s,取 rR=5x102s-1由圖3-56得:Rn=2.5mm,取3mm,為使分流道易于加工和頂出凝料系統(tǒng)容易,采用設(shè)在模具一邊的U形分流道。3.點澆口尺寸 根據(jù)QG=QR=8.5cm3/s,并取rG=105s-1,由圖3-56可得Rn=0.5mm,故得dG=2Rn=1.0mm。 計 算 內(nèi) 容說 明4.冷料穴 底部設(shè)計成帶有球頭形拉料桿的冷料穴,目的是捕集料流前鋒的“冷料”,防止“冷料”進入型腔而影響塑件質(zhì)量。該模具澆注系統(tǒng)的尺寸如圖所示。模具澆注系統(tǒng)圖 計 算 內(nèi) 容說 明第六部分 排氣槽設(shè)計 一、排氣槽設(shè)計當(dāng)塑料熔體填充型腔時,必須順序排出型腔及澆注系統(tǒng)內(nèi)的空氣及塑料受熱或凝固產(chǎn)生的低分子揮發(fā)氣體。如果型腔內(nèi)因各種原因而產(chǎn)生的氣體不被排除干凈,一方面將會在塑件上形成氣泡、接縫、表面輪廓不清及充填缺料等成型缺陷,另一方面氣體受壓,體積縮小而產(chǎn)生高溫會導(dǎo)致塑件局部碳化或燒焦(褐色斑紋),同時積存的氣體還會產(chǎn)生反向壓力而降低充模速度,因此設(shè)計型腔時必須考慮排氣問題。有時在注射成型過程中,為保證型腔充填量的均勻合適及增加塑料熔體匯合處的熔接強度,還需在塑料最后充填到的型腔部位開設(shè)溢流槽以容納余料,也可容納一定量的氣體。通常中小型模具的簡單型腔,可利用推桿、活動型芯以及雙支點的固定型芯端部與模板的配合間隙進行排氣,其間隙為0.030.05mm。 計 算 內(nèi) 容說 明第七部分 成形零件設(shè)計一、成型零件的結(jié)構(gòu)設(shè)計1.凹模 采用整體式凹模2.凸模 由于塑件帶有螺紋,為了簡化模具的加工工藝,凸模設(shè)計成活動鑲塊的形式,活動鑲塊的固定方式如下圖所示: 活動鑲塊的固定方式 計 算 內(nèi) 容說 明 二、成型零件工作尺寸的計算1.產(chǎn)生偏差的原因.塑料的成型收縮成型收縮引起制品產(chǎn)生尺寸偏差的原因有:預(yù)定收縮率(設(shè)計算成型零部件工作尺寸所用的收縮率)與制品實際收縮率之間的誤差;成型過程中,收縮率可能在其最大值和最小值之間發(fā)生的波動。s=(Smax-Smin)制品尺寸 s成型收縮率波動引起的制品的尺寸偏差。Smax、Smin 分別是制品的最大收縮率和最小收縮率。 .成型零部件的制造偏差工作尺寸的制造偏差包括加工偏差和裝配偏差。.成型零部件的磨損.本產(chǎn)品為抗沖制品,屬于大批量生產(chǎn)的小型塑件,預(yù)定的收縮率的最大值和最小值分別取.8%和.3。 計 算 內(nèi) 容說 明此產(chǎn)品采用級精度,屬于低精度制品。因此,凸凹模徑向尺寸、高度尺寸及深度尺寸的制造與作用修正系數(shù)x取值可在0.50.75的范圍之間,凸凹模各處工作尺寸的制造公差,因一般機械加工的型腔和型芯的制造公差可達到ITIT級,綜合參考,相關(guān)計算具體如下:型腔徑向尺寸的計算:LM1=(1+(Smax+Smin)/2)sl-0.5+Z0 = (1+0.55%)36.2-0.50.36+0.36/30 =36.22+0.120 mmLM2=(1+(Smax+Smin)/2)s2-0.5 +Z0 = (1+0.55%)46-0.50.40+0.40/30 =46.03+0.130 mm 計 算 內(nèi) 容說 明LM3=(1+(Smax+Smin)/2)s3-0.5 +Z0 = (1+0.55%)60-0.50.46+0.46/30 =60.1+0.150 mm 型腔深度尺寸的計算: HM1=(1+(Smax+Smin)/2)Hsl-0.5 +Z0 = (1+0.55%)18-0.50.28+0.28/30 =17.88+0.090 mmHM2=(1+(Smax+Smin)/2)Hs2-0.5 +Z0 = (1+0.55%)16-0.50.24+0.24/30 =15.87+0.080 mm型腔工作尺寸圖 計 算 內(nèi) 容說 明型芯的徑向尺寸的計算:lM1=(1+(Smax+Smin)/2)lsl+0.50-Z = (1+0.55%)46+0.50.400-0.40/3 =46.430-0.13 mmlM2=(1+(Smax+Smin)/2)ls2+0.50-Z = (1+0.55%)44+0.50.400-0.40/3 =44.420-0.13 mmlM3=(1+(Smax+Smin)/2)ls3+0.50-Z = (1+0.55%)40+0.50.400-0.40/3 =40.420-0.13 mm 型芯深度尺寸的計算: hM1=(1+(Smax+Smin)/2)hsl+0.50-Z = (1+0.55%)14+0.50.240-0.24/3 =14.270-0.08 mm 計 算 內(nèi) 容說 明hM2=(1+(Smax+Smin)/2)hs2+0.50-Z = (1+0.55%)15+0.50.400-0.24/3 =15.280-0.08 mm型芯工作尺寸圖計算螺紋型芯的工作尺寸:螺紋型芯大徑: (dM大)0-z=(1+ s)ds大+中 0-z 螺紋型芯中徑: (dM中)0-z=(1+ s)ds中+中 0-z 螺紋型芯小徑: (dM小)0-z=(1+ s)ds小+中 0-z 計 算 內(nèi) 容說 明dM大, dM中, dM小 分別為螺紋型芯的大,中,小徑;ds大, ds中,ds小 分別為塑件內(nèi)螺紋大,中,小徑基本尺寸;中塑件螺紋中徑公差;z螺紋型芯的中徑制造公差,其值取/5。則 (dM大)0-z =(1+0.55%)56+0.030-0.03/5 =56.3380-0.006 (dM中)0-z =(1+0.55%)55+0.030-0.03/5 =55.3320-0.006 (dM小)0-z =(1+0.55%)54+0.030-0.03/5 =54.3270-0.006三、成型零件的強度、剛度計算注射模在其工作過程需要承受多種外力,如注射壓力、保壓力、合模力和脫模力等。如果外力過大,注射模及其成型零部件將會產(chǎn)生塑性變形或斷裂破壞,或產(chǎn)生較大的彈性彎曲變形,引起成型零部件在它們的對接面或貼合面處出現(xiàn)較大的間隙,由此而發(fā)生溢料及飛邊現(xiàn)象,從而導(dǎo)致整個模具失效或無法達到技術(shù)質(zhì)量要求。因此,在模 計 算 內(nèi) 容說 明具設(shè)計時,成型零部件的強度和剛度計算和較核是必不可少的。一般來說,凹模型腔的側(cè)壁厚度和底部的厚度可以利用強度計算決定,但凸模和型芯通常都是由制品內(nèi)形或制品上的孔型決定,設(shè)計時只能對它們進行強度校核。因在設(shè)計時采用的是整體式圓形型腔。因此,計算參考公式如下:側(cè)壁:按強度計算:按剛度計算:底部:按強度計算:按剛度計算: 凸模、型芯計算公式:按強度計算: 計 算 內(nèi) 容說 明按剛度計算:由公式分別計算出相應(yīng)的值為:按強度計算得:tc=11.1mm th=14.8mm r=18.5mm按剛度計算得:tc=2.83mm th=1.91mm r=3.97mm 參數(shù)符號的意義和單位: Pm 模腔壓力(MPa)E 材料的彈性模量(MPa)查得2.06105; 材料的許用應(yīng)力(MPa)查得176.5;u 材料的泊松比 查表得0.025; 成型零部件的許用變形量(mm)查得0.05;采用材料為45,調(diào)質(zhì),200HBS。 計 算 內(nèi) 容說 明第八部分 導(dǎo)向機構(gòu)的設(shè)計導(dǎo)柱導(dǎo)向機構(gòu)是保證動定?;蛏舷履:夏r,正確定位和導(dǎo)向的零件。一、 導(dǎo)柱導(dǎo)向機構(gòu)的作用1.定位件用 模具閉合后,保證動定?;蛏舷履N恢谜_,保證型腔的形狀和尺寸精確,在模具的裝配過程中也起定位作用,便于裝配和調(diào)整。2.導(dǎo)向作用 合模時,首先是導(dǎo)向零件接觸,引導(dǎo)動定模或上下模準確閉合,避免型芯先進入型腔造成成型零件損壞。3.承受一定的側(cè)向壓力。二、 導(dǎo)柱導(dǎo)套的選擇1. 導(dǎo)柱導(dǎo)套結(jié)約形式及尺寸如下圖: 計 算 內(nèi) 容說 明導(dǎo)柱的結(jié)構(gòu)形式其材料采用T8A經(jīng)淬火處理,硬度為5055HRC。導(dǎo)柱、導(dǎo)套固定部分表面粗糙度Ra為08m,導(dǎo)向部分表面粗糙度Ra為0.80.4m。具體尺寸如上圖所示。導(dǎo)柱、導(dǎo)套用H7/k6配合鑲?cè)肽0濉?.導(dǎo)柱的布置采用等徑導(dǎo)柱不對稱布置,如圖所示。 計 算 內(nèi) 容說 明導(dǎo)柱的布置形式 第九部分 推出機構(gòu)的設(shè)計 一、推出機構(gòu)的組成推出機構(gòu)由推出零件、推出零件固定板和推板、推出機構(gòu)的導(dǎo)向與復(fù)位部件組成。即推件板、推件板緊固螺釘、推板固定板、推桿墊板、頂板導(dǎo)柱、頂板導(dǎo)套以及推板緊固螺釘。 計 算 內(nèi) 容說 明 二、設(shè)計原則1.推出機構(gòu)應(yīng)盡量設(shè)在動模一側(cè);2.保證塑件不因推出而變形損壞;3.機構(gòu)簡單動作可靠;4.合模時的正確復(fù)位。三、推出機構(gòu)的設(shè)計此塑件帶有螺紋,它的型芯是設(shè)計成活動鑲塊的形式,所以可以利用活動鑲塊來推塑件,開模時,塑件和鑲塊一起脫模,在模外,用手將塑件旋出。四、復(fù)位零件利用彈簧的彈力使推出機構(gòu)復(fù)位。 計 算 內(nèi) 容說 明第十部分 冷卻系統(tǒng)設(shè)計一、注射模冷卻系統(tǒng)設(shè)計基本原則:熔體熱量95%由冷卻介質(zhì)(水)帶走,冷卻時間占成型周期的2/3。A、 冷卻系統(tǒng)從模具中帶走熱量:Q=KATt/3600 (J)A 冷卻介質(zhì)傳熱面積(m2):A=dL。 冷卻管道直徑(m); L 冷卻管長度(m); K 冷卻管壁與介質(zhì)間的傳熱膜系數(shù)J/(m2hC) K=0.032x/d(vd/)0.8(gC/)0.4 . 冷卻水的平均導(dǎo)熱系數(shù)(w(/mk);f 與冷卻介質(zhì)溫度有關(guān)的物理系數(shù); g 重力加速度(m/s) v 冷卻介質(zhì)在管中流速(m/s); 冷卻介質(zhì)在該溫度下的密度kg/m3,水在30 計 算 內(nèi) 容說 明 時取為0.996103kg/m3。d. 冷卻管直徑;T 模溫與冷卻介質(zhì)的平均溫差();t 冷卻時間; 水溫與f關(guān)系平均水溫202530354045f6.456.847.227.607.988.31二、冷卻管尺寸(直徑d,長度L、面積A=dL)1.忽略其他散熱,冷卻介質(zhì)流量。V=WQ/(t-t) (m/min)C 介質(zhì)比熱J/kg.C,水為4.187x10;W 單位時間內(nèi)注入模具中塑料重量(kg/min);Q 塑料熔體的單位熱量(J/kg); 冷卻介質(zhì)密度(kg/ m),水為10kg/ m 計 算 內(nèi) 容說 明2. 經(jīng)驗確實管道直徑直徑d(mm)最低流速v(m/s)流量(m/min)81.665.0x10101.326.2 x10121.107.4 x10150.879.2 x10200.6612.4 x10250.5315.5 x103. 冷卻水對其通道表壁傳熱系數(shù)的簡化公式當(dāng)冷卻水平均溫度在0C以上,e=6 x10時,其計算結(jié)果產(chǎn)生誤差在以內(nèi):K=2041x(1-0.015)v/d 為冷卻水平均溫度;4.計算流量 V=W Q/( =2.62x10 初步確定冷卻水道 d=8mm;流速為 =Q/d =1.31x10m/s管子的長度L=60WQ/k 計 算 內(nèi) 容說 明 熱傳導(dǎo)面的平均溫度與冷卻水平均溫度的差值,其中冷卻的平均溫度為冷卻水在進口處和出口處溫度的平均值。第十一部分 注射機的參數(shù)校核一、塑件在分型面上的投影面積與鎖模力校核注射成型時,塑件在模分型面的投影面積是影響鎖模力的主要因素,其數(shù)值越大,需鎖模力也就越大,若超過注射機的允許最大成型面積,則在成型過程中會出現(xiàn)漲模溢料現(xiàn)象。因此有:塑件總的投影面積nA與澆注系統(tǒng)的投影面積之和要小于最大成型面積 A。 nA+AA4x28.27+4x0.6x6=127.48mm320 mm 滿足要求應(yīng)使塑料熔體對型腔的成型壓力與塑件和澆注系統(tǒng)在分型面上的投影面積之和的乘積小于注射機額定鎖模力:(nA+A)PFT=127.48x3500=446180N=446.18kN900kN 滿足要求 計 算 內(nèi) 容說 明i. 模具厚度校核模具厚度H必須滿足:HminHHmax式中 Hmin注射機允許的最小模厚,即動,定模板之間的最小開距;Hmax注射機允許的最大模厚。H=210mm,H=200mm,M=300mm。符合條件。三、 開模行程校核由于注射模最大開模行程S與模厚無關(guān),因此有:SH1+H2+a+(510)mm式中 H1推出距離(脫模距離)(mm);H2包括澆注系統(tǒng)凝料在內(nèi)的塑件高度(mm);a取出澆注系統(tǒng)凝料必須的長度(mm)。H1=40mm, H2=40mm,a=24mm所以s=114mm,遠小于注射機的最大開模行程300mm,合適。綜上所述,所選擇的注射機滿足注射要求。 第十二部分 設(shè)計總結(jié)通過這次系統(tǒng)的注射模的設(shè)計,我更進一步的了解了注射模的結(jié)構(gòu)及各工作零部件的設(shè)計原則和設(shè)計要點,了解了注射模具設(shè)計的一般程序。進行塑料產(chǎn)品的模具設(shè)計首先要對成型制品進行分析,再考慮澆注系統(tǒng)、型腔的分布、導(dǎo)向推出機構(gòu)等后續(xù)工作。通過制品的零件圖就可以了解制品的設(shè)計要求。對形態(tài)復(fù)雜和精度要求較高的制品,有必要了解制品的使用目的、外觀第十二部分 參考文獻參考資料:1. 鐘疏斌主編.沖壓工藝與模具設(shè)計.北京:機械工業(yè)出版社,2. 沖模設(shè)計手冊編寫組編著.沖模設(shè)計手冊.北京:機械工業(yè)出版社,3. 李天佑主編.沖模圖冊.北京:機械工業(yè)出版社,4. 品成型與模具設(shè)計,葉久新 王群主編,湖南科學(xué)技術(shù)出版社。5. 塑料注塑模結(jié)構(gòu)與設(shè)計,楊占堯主編,清華大學(xué)出版社。6. 注塑模具設(shè)計經(jīng)驗點評,王永平主編,機械工業(yè)出版社。7. 注塑模具典型結(jié)構(gòu)100例,蔣繼宏主編,中國輕工業(yè)出版社。
收藏