九年級數(shù)學下冊 26 反比例函數(shù)檢測題 (新版)新人教版
《九年級數(shù)學下冊 26 反比例函數(shù)檢測題 (新版)新人教版》由會員分享,可在線閱讀,更多相關(guān)《九年級數(shù)學下冊 26 反比例函數(shù)檢測題 (新版)新人教版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第26章檢測題 (時間:120分鐘 滿分:120分) 一、選擇題(每小題3分,共30分) 1.下列函數(shù)中,y與x成反比例的是( B ) A.y= B.y= C.y=3x2 D.y=+1 2.點A(-1,1)是反比例函數(shù)y=的圖象上一點,則m的值為( B ) A.-1 B.-2 C.0 D.1 3.對于函數(shù)y=,下列說法錯誤的是( C ) A.這個函數(shù)的圖象位于第一、三象限 B.這個函數(shù)的圖象既是軸對稱圖形,又是中心對稱圖形 C.當x>0時,y隨x的增大而增大 D.當x<0時,y隨x的增大而減小 4.(2016遵義)已知反比例函數(shù)y=(k>0)的圖象經(jīng)過點A(1,a),B(3,b),則a與b的關(guān)系正確的是( D ) A.a(chǎn)=b B.a(chǎn)=-b C.a(chǎn)<b D.a(chǎn)>b 5.在同一平面直角坐標系中,一次函數(shù)y=kx-k與反比例函數(shù)y=(k≠0)的圖象大致是( A ) 6.如圖,正比例函數(shù)y=x與反比例函數(shù)y=的圖象相交于A,B兩點,BC⊥x軸于點C,則△ABC的面積為( A ) A.1 B.2 C. D. ,第7題圖) 7.在一個可以改變體積的密閉容器內(nèi)裝有一定質(zhì)量的二氧化碳,當改變?nèi)萜鞯捏w積時,氣體的密度也會隨之改變,密度ρ(單位:kg/m3)是體積V(單位:m3)的反比例函數(shù),它的圖象如圖所示,當V=10 m3時,氣體的密度是( D ) A.5 kg/m3 B.2 kg/m3 C.100 kg/m3 D.1 kg/m3 8.某數(shù)學課外興趣小組的同學每人制作一個面積為200 cm2的矩形學具進行展示.設(shè)矩形的寬為x cm,長為y cm,那么這些同學所制作的矩形長y(cm)與寬x(cm)之間的函數(shù)關(guān)系的圖象大致是( A ) 9.反比例函數(shù)y1=(x>0)的圖象與一次函數(shù)y2=-x+b的圖象交于A,B兩點,其中A(1,2),當y2>y1時,x的取值范圍是( B ) A.x<1 B.1<x<2 C.x>2 D.x<1或x>2 10.已知點A在雙曲線y=-上,點B在直線y=x-4上,且A,B兩點關(guān)于y軸對稱.設(shè)點A的坐標為(m,n),則+的值是( A ) A.-10 B.-8 C.6 D.4 二、填空題(每小題3分,共24分) 11.已知函數(shù)y=(n-2)xn2-5是反比例函數(shù),且圖象位于第二、四象限內(nèi),則n=__-2__. 12.(2016淮安)若點A(-2,3),B(m,-6)都在反比例函數(shù)y=(k≠0)的圖象上,則m的值是__1__. 13.已知點A(-2,y1),B(1,y2)和C(3,y3)都在反比例函數(shù)y=(k>0)的圖象上,則y1,y2,y3的大小關(guān)系為__y1<y3<y2__.(用“<”連接) 14.如圖,l1是反比例函數(shù)y=在第一象限內(nèi)的圖象,且過點A(2,1),l2與l1關(guān)于x軸對稱,那么圖象l2的函數(shù)解析式為__y=-__(x>0). ,第14題圖) ,第16題圖) ,第17題圖) ,第18題圖) 15.已知點A(x1,y1),點B(x2,y2)都在反比例函數(shù)y=的圖象上,若x1x2=-3,則y1y2的值為__-12__. 16.如圖,點A在反比例函數(shù)y=(x>0)的圖象上,過點A作AD⊥y軸于點D,延長AD至點C,使CD=AD,過點A作AB⊥x軸于點B,連接BC交y軸于點E.若△ABC的面積為6,則k的值為__12__. 17.函數(shù)y1=x(x≥0),y2=(x>0)的圖象如圖所示,下列結(jié)論:①兩函數(shù)圖象的交點坐標為A(2,2);②當x>2時, y2>y1;③直線x=1分別與兩函數(shù)圖象交于B,C兩點,則線段BC的長為3;④當x逐漸增大時,y1的值隨著x的增大而增大,y2的值隨著x的增大而減?。畡t其中正確的序號是__①③④__. 18.如圖,在反比例函數(shù)y=(x>0)的圖象上,有點P1,P2,P3,P4,它們的橫坐標依次是1,2,3,4,分別過這些點作x軸與y軸的垂線,若圖中所構(gòu)成的陰影部分的面積從左到右依次為S1,S2,S3,則S1+S2+S3=__3__. 三、解答題(共66分) 19.(6分)已知y=y(tǒng)1+y2,其中y1與3x成反比例,y2與-x2成正比例,且當x=1時,y=5;當x=-1時,y=-2.求當x=3時,y的值. 解:設(shè)y=+k2(-x2),由題意可求得y=+x2,當x=3時,y= 20.(8分)已知點P(2,2)在反比例函數(shù)y=(k≠0)的圖象上. (1)當x=-3時,求y的值; (2)當1<x<3時,求y的取值范圍. 解:(1)- (2)<y<4 21.(8分)已知反比例函數(shù)y=(k≠0)和一次函數(shù)y=x-6. (1)若一次函數(shù)與反比例函數(shù)的圖象交于點P(2,m),求m和k的值; (2)當k滿足什么條件時,兩函數(shù)的圖象沒有交點? 解:(1)m=2-6=-4,∴點P(2,-4),則k=2(-4)=-8 (2)由題意得=x-6,即x2-6x-k=0.∵要使兩函數(shù)的圖象沒有交點,須使方程x2-6x-k=0無解,∴Δ=(-6)2-4(-k)<0,即36+4k<0,解得k<-9,符合k≠0的前提條件,∴當k<-9時,兩函數(shù)的圖象沒有交點 22.(10分)(2016資陽)如圖,在平行四邊形ABCD中,點A,B,C的坐標分別是(1,0),(3,1),(3,3),雙曲線y=(k≠0,x>0)過點D. (1)求雙曲線的解析式; (2)作直線AC交y軸于點E,連接DE,求△CDE的面積. 解:(1)易知點D的坐標是(1,2),∵雙曲線y=(k≠0,x>0)過點D,∴2=,解得k=2,即雙曲線的解析式是y= (2)∵S△CDE=S△EDA+S△ADC=+=1+2=3 23.(10分)如圖,反比例函數(shù)y=的圖象經(jīng)過點A(-1,4),直線y=-x+b(b≠0)與雙曲線y=在第二、四象限分別相交于P,Q兩點,與x軸、y軸分別相交于C,D兩點. (1)求k的值; (2)當b=-2時,求△OCD的面積; (3)連接OQ,是否存在實數(shù)b,使得S△ODQ=S△OCD?若存在,請求出b的值;若不存在,請說明理由. 解:(1)k=-14=-4 (2)當b=-2時,直線解析式為y=-x-2,∵當y=0時,-x-2=0,解得x=-2,∴C(-2,0),∵當x=0時,y=-x-2=-2,∴D(0,-2),∴S△OCD=22=2 (3)存在.當y=0時,-x+b=0,解得x=b,則C(b,0),∵S△ODQ=S△OCD,∴點Q和點C到OD的距離相等,而Q點在第四象限,∴Q的橫坐標為-b,當x=-b時,y=-x+b=2b,則Q(-b,2b),∵點Q在反比例函數(shù)y=-的圖象上,∴-b2b=-4,解得b=-或b=(舍去),∴b的值為-時,S△ODQ=S△OCD 24.(12分)如圖,制作某種食品的同時需將原材料加熱,設(shè)該材料溫度為y ℃,從加熱開始計算的時間為x分鐘.據(jù)了解,該材料在加熱過程中溫度y與時間x成一次函數(shù)關(guān)系. 已知該材料在加熱前的溫度為4 ℃,加熱一段時間使材料溫度達到28 ℃時停止加熱,停止加熱后,材料溫度逐漸下降,這時溫度y與時間x成反比例函數(shù)關(guān)系,已知當?shù)?2分鐘時,材料溫度是14 ℃. (1)分別求出該材料加熱和停止加熱過程中y與x的函數(shù)關(guān)系式(寫出x的取值范圍); (2)根據(jù)該食品制作要求,在材料溫度不低于12 ℃的這段時間內(nèi),需要對該材料進行特殊處理,那么對該材料進行特殊處理的時間為多少分鐘? 解:(1)y=4x+4(0≤x≤6),y=(x>6) (2)當y=12時,由y=4x+4得x=2,由y=得x=14,所以對該材料進行特殊處理所用的時間為14-2=12(分鐘) 25.(12分)在平面直角坐標系內(nèi),反比例函數(shù)和二次函數(shù)y=k(x2+x-1)的圖象交于點A(1,k)和點B(-1,-k). (1)當k=-2時,求反比例函數(shù)的解析式; (2)要使反比例函數(shù)和二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍; (3)設(shè)二次函數(shù)的圖象的頂點為Q,當△ABQ是以AB為斜邊的直角三角形時,求k的值. 解:(1)y=- (2)∵要使反比例函數(shù)和二次函數(shù)都是y隨著x的增大而增大,∴k<0,∵二次函數(shù)y=k(x2+x-1)=k(x+)2-k,對稱軸為直線x=-,要使二次函數(shù)y=k(x2+x-1)滿足上述條件,在k<0的情況下,x必須在對稱軸的左邊,即x<-時,才能使得y隨著x的增大而增大,∴綜上所述,k<0且x<- (3)由(2)可得Q(-,-k),∵△ABQ是以AB為斜邊的直角三角形,A點與B點關(guān)于原點對稱(如圖是其中的一種情況),∴原點O平分AB,∴OQ=OA=OB,作AD⊥x軸,QC⊥x軸,∴OQ==,∵OA==,∴=,解得k=- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 九年級數(shù)學下冊 26 反比例函數(shù)檢測題 新版新人教版 九年級 數(shù)學 下冊 反比例 函數(shù) 檢測 新版 新人
鏈接地址:http://m.appdesigncorp.com/p-11759037.html