《高三數(shù)學(xué)第一篇二 函數(shù)與導(dǎo)數(shù)刺 第3講 導(dǎo)數(shù)及其應(yīng)用第2課時(shí) 導(dǎo)數(shù)的綜合應(yīng)用 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《高三數(shù)學(xué)第一篇二 函數(shù)與導(dǎo)數(shù)刺 第3講 導(dǎo)數(shù)及其應(yīng)用第2課時(shí) 導(dǎo)數(shù)的綜合應(yīng)用 文(31頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第第2 2課時(shí)導(dǎo)數(shù)的綜合應(yīng)用課時(shí)導(dǎo)數(shù)的綜合應(yīng)用總綱目錄考點(diǎn)一 利用導(dǎo)數(shù)證明不等式考點(diǎn)二 利用導(dǎo)數(shù)解決不等式的恒成立、存在性問(wèn)題考點(diǎn)三 利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)或方程根的問(wèn)題考點(diǎn)一 利用導(dǎo)數(shù)證明不等式若證明f(x)g(x),xa,b,只需構(gòu)造函數(shù)F(x)=f(x)-g(x),xa,b,證明F(x)max0即可;同理若證明f(x)g(x),xa,b,只需構(gòu)造函數(shù)F(x)=f(x)-g(x),xa,b,證明F(x)min0即可.典型例題典型例題(2016課標(biāo),21,12分)設(shè)函數(shù)f(x)=ln x-x+1.(1)討論f(x)的單調(diào)性;(2)證明當(dāng)x(1,+)時(shí),11,證明當(dāng)x(0,1)時(shí),1+(c-1)
2、xcx.解析解析(1)由題設(shè)知, f(x)的定義域?yàn)?0,+), f (x)=-1,令f (x)=0,解得x=1.當(dāng)0 x0, f(x)單調(diào)遞增;當(dāng)x1時(shí), f (x)0, f(x)單調(diào)遞減.(2)證法一:x(1,+),不等式1x等價(jià)于ln xx-11).則h(x)=-1=0.h(x)在(1,+)上單調(diào)遞減.h(x)h(1)=0,即ln x-x+10,ln x1).則g(x)=1-(ln x+1)=-ln x0.g(x)在(1,+)上單調(diào)遞減.g(x)g(1)=0,即x-1-xln x0,x-1xln x.1x1xx綜上,當(dāng)x(1,+)時(shí),ln xx-1xln x,即1x.證法二:由(1)知f
3、(x)在x=1處取得最大值,最大值為f(1)=0.所以當(dāng)x1時(shí),ln xx-1.故當(dāng)x(1,+)時(shí),ln xx-1,ln-1,即11,設(shè)g(x)=1+(c-1)x-cx,則g(x)=c-1-cxln c,令g(x)=0,解得x0=.當(dāng)x0,g(x)單調(diào)遞增;當(dāng)xx0時(shí),g(x)0,g(x)單調(diào)遞減.由(2)知1c,故0 x01.1lnxx1x1x1lnxx1lnlnlnccc1lncc又g(0)=g(1)=0,故當(dāng)0 x0.所以當(dāng)x(0,1)時(shí),1+(c-1)xcx.方法歸納方法歸納利用導(dǎo)數(shù)證明不等式的基本步驟(1)作差變形;(2)構(gòu)造新的函數(shù)F(x);(3)對(duì)F(x)求導(dǎo);(4)利用F(x)
4、判斷F(x)的單調(diào)性或取值;(5)下結(jié)論.跟蹤集訓(xùn)跟蹤集訓(xùn)(2017山西太原第二次模擬)已知函數(shù)f(x)=ex-ax2-2x(aR).(1)當(dāng)a=0時(shí),求f(x)的最小值;(2)當(dāng)a-1在(0,+)上恒成立.解析解析(1)當(dāng)a=0時(shí), f(x)=ex-2x,f (x)=ex-2.令f (x)0,得xln 2,令f (x)0,得xln 2.f(x)在(-,ln 2)上單調(diào)遞減,在(ln 2,+)上單調(diào)遞增.f(x)min=f(ln 2)=2-2ln 2.(2)證法一:原不等式等價(jià)于a0,則g(x)=.令h(x)=(x-2)ex+2x+e-2,x0,則h(x)=(x-1)ex+2,令t(x)=(x
5、-1)ex+2,x0,則t(x)=xex0.h(x)=t(x)在(0,+)上單調(diào)遞增,h(0)=10,h(x)0在(0,+)上恒成立,h(x)在(0,+)上單調(diào)遞增,又h(1)=0,當(dāng)0 x1時(shí),h(x)0,g(x)1時(shí),h(x)0,g(x)0,g(x)在(1,+)上單調(diào)遞增,g(x)g(1)=-1.2ee212xxx3(2)e2e2xxxx e2a-1,ag(x)在(0,+)上恒成立,原不等式成立.證法二:當(dāng)a1-2=3-e0,f (x)=p(x)=ex-2ax-2在(0,+)上單調(diào)遞增,又f (0)=-1e-2-2=0,存在x0(0,1),使得f (x0)=0,即-2ax0-2=0,a=.
6、e2e2e12e120ex00e22xx當(dāng)x(0,x0)時(shí), f (x)0,f(x)在(0,x0)上單調(diào)遞減,在(x0,+)上單調(diào)遞增,當(dāng)x(0,+)時(shí), f(x)min=f(x0)=-a-2x0=-x0-x0,0 x01,令m(x)=ex-exx-x(0 x1),則m(x)=ex(1-x)-1,令n(x)=ex(1-x)-1(0 x1),則n(x)=-xex0,n(x)在(0,1)上單調(diào)遞減,m(x)=n(x)n(0)=-m(1)=-1,0ex20 x0ex120ex1212121212e2f(x)f(x0)-1.e2考點(diǎn)二 利用導(dǎo)數(shù)解決不等式的恒成立、存在性問(wèn)題“恒成立”與“存在性”問(wèn)題可
7、看作一類(lèi)問(wèn)題,一般都可通過(guò)求相關(guān)函數(shù)的最值來(lái)解決,如:當(dāng)f(x)在xD上存在最大值和最小值時(shí),若f(x)g(a)對(duì)于xD恒成立,應(yīng)求f(x)在xD上的最小值,將原條件轉(zhuǎn)化為g(a)f(x)min,若f(x)g(a)對(duì)于xD恒成立,應(yīng)求f(x)在xD上的最大值,將原條件轉(zhuǎn)化為g(a)f(x)max;若存在xD,使得f(x)g(a)成立,應(yīng)求f(x)在xD上的最大值,將原條件轉(zhuǎn)化為g(a)f(x)max,若存在xD,使得f(x)g(a)成立,應(yīng)求f(x)在xD上的最小值,將原條件轉(zhuǎn)化為g(a)f(x)min.典型例題典型例題(2017課標(biāo)全國(guó),21,12分)設(shè)函數(shù)f(x)=(1-x2)ex.(1)
8、討論f(x)的單調(diào)性;(2)當(dāng)x0時(shí), f(x)ax+1,求a的取值范圍.解析解析(1)f (x)=(1-2x-x2)ex.令f (x)=0,得x=-1-或x=-1+.當(dāng)x(-,-1-)時(shí), f (x)0;當(dāng)x(-1+,+)時(shí), f (x)0.所以f(x)在(-,-1-),(-1+,+)單調(diào)遞減,在(-1-,-1+)單調(diào)遞增.2222222222(2)f(x)=(1+x)(1-x)ex.當(dāng)a1時(shí),設(shè)函數(shù)h(x)=(1-x)ex,h(x)=-xex0),因此h(x)在0,+)單調(diào)遞減,而h(0)=1,故h(x)1,所以f(x)=(x+1)h(x)x+1ax+1.當(dāng)0a0(x0),所以g(x)在0
9、,+)單調(diào)遞增,而g(0)=0,故exx+1.當(dāng)0 x(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=,則x0(0,1),(1-x0)(1+x0)2-ax0-1=0,故f(x0)ax0+1.當(dāng)a0時(shí),取x0=,5412a512則x0(0,1), f(x0)(1-x0)(1+x0)2=1ax0+1.綜上,a的取值范圍是1,+).方法歸納方法歸納對(duì)于不等式恒成立問(wèn)題,可從函數(shù)角度轉(zhuǎn)化為求函數(shù)的最值問(wèn)題,也可以采用分離變量法將變量分離出來(lái),進(jìn)而轉(zhuǎn)化為求函數(shù)的最值,從而求得參數(shù)的范圍.跟蹤集訓(xùn)跟蹤集訓(xùn)(2017福建八校適應(yīng)性考試)已知函數(shù)f(x)=ln x+a
10、x2+bx,a,bR.(1)若a=-2,b=1,求函數(shù)f(x)的單調(diào)區(qū)間;(2)若對(duì)任意的a1,+), f(x)0在x1,+)上恒成立,求實(shí)數(shù)b的取值范圍.解析解析(1)函數(shù)f(x)的定義域?yàn)?0,+),當(dāng)a=-2,b=1時(shí), f(x)=ln x-x2+x,f (x)=-2x+1=.令f (x)0,得0 x1;令f (x)1.所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+).121x221xxx(21)(1)xxx(2)解法一:f(x)=ln x+ax2+bx0在x1,+)上恒成立等價(jià)于ln x+bx-x2a在x1,+)上恒成立,因?yàn)閷?duì)任意的a1,+),ln x+bx-x2
11、a在x1,+)上恒成立,所以等價(jià)于ln x+bx-x2在x1,+)上恒成立,即ln x+x2+bx0在x1,+)上恒成立.令g(x)=ln x+x2+bx,則g(x)=+x+b=,令g(x)=0,則x2+bx+1=0,=b2-4.當(dāng)-2b2時(shí),0,即g(x)0恒成立,g(x)=ln x+x2+bx在x1,+)上為增函數(shù),要使g(x)0在x1,+)上恒成立,只需g(1)=ln 1+12+b=+1212121212121x21xbxx121212b0,此時(shí)-b2.當(dāng)b2時(shí),顯然g(x)0恒成立,g(x)=ln x+x2+bx在x1,+)上為增函數(shù),要使g(x)0在x1,+)上恒成立,只需g(1)=
12、ln 1+12+b=+b0,此時(shí)b2.當(dāng)b0,令g(x)=0,得x1=,x2=,因?yàn)閤2=1,且x1x2=1,所以0 x11,g(x)=,當(dāng)1xx2時(shí),g(x)x2時(shí),g(x)0,所以當(dāng)x1,x2)時(shí),函數(shù)g(x)為減函數(shù),g(x)g(1)=+b0,即g(x)0在x1,+)上恒成立,即g(x)在x1,+)上為增函數(shù),所以g(x)min=g(1)=,所以-b,b-.故滿足條件的實(shí)數(shù)b的取值范圍是.1212121,2考點(diǎn)三 利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)或方程根的問(wèn)題研究函數(shù)零點(diǎn)或方程根的情況,可以通過(guò)導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最大值、最小值、變化趨勢(shì)等,并借助函數(shù)的大致圖象判斷函數(shù)零點(diǎn)或方程根的情況.典型例題
13、典型例題(2016課標(biāo),21,12分)已知函數(shù)f(x)=(x-2)ex+a(x-1)2.(1)討論f(x)的單調(diào)性;(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.解析解析(1)f (x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a).(i)設(shè)a0,則當(dāng)x(-,1)時(shí), f (x)0.所以f(x)在(-,1)單調(diào)遞減,在(1,+)單調(diào)遞增.(ii)設(shè)a-,則ln(-2a)0;e2e2當(dāng)x(ln(-2a),1)時(shí), f (x) 0.所以f(x)在(-,ln(-2a),(1,+)單調(diào)遞增,在(ln(-2a),1)單調(diào)遞減.若a1,故當(dāng)x(-,1)(ln(-2a),+)時(shí), f (x)0;當(dāng)
14、x(1,ln(-2a)時(shí), f (x)0,則由(1)知, f(x)在(-,1)單調(diào)遞減,在(1,+)單調(diào)遞增.又f(1)=-e, f(2)=a,取b滿足b0且b(b-2)+a(b-1)2=a0,所以f(x)有兩個(gè)零點(diǎn).(ii)設(shè)a=0,則f(x)=(x-2)ex,所以f(x)只有一個(gè)零點(diǎn).e22a2a232bb(iii)設(shè)a0,若a-,則由(1)知, f(x)在(1,+)單調(diào)遞增,又當(dāng)x1時(shí)f(x)0,故f(x)不存在兩個(gè)零點(diǎn);若a-,則由(1)知, f(x)在(1,ln(-2a)單調(diào)遞減,在(ln(-2a),+)單調(diào)遞增,又當(dāng)x1時(shí)f(x)0,由f (1)=a+1=0,解得a=-1,則f(x
15、)=-x+xln x,f (x)=ln x,令f (x)0,解得x1;令f (x)0,解得0 x-1,即m-2,當(dāng)0 x1時(shí), f(x)=x(-1+ln x)0且x0時(shí), f(x)0;當(dāng)x+時(shí),顯然f(x)+.如圖,由圖象可知,m+10,即m-1,由可得-2m0且a1),且函數(shù)h(x)的圖象在(1,0)處的切線方程為x-y-1=0, f(x)=mh(x)+x2+1.(1)討論函數(shù)f(x)的單調(diào)性:(2)當(dāng)-1m0時(shí),若函數(shù)F(x)=f(x)-1-ln(-m)在區(qū)間(0,+)上的圖象恒在x軸上方,求實(shí)數(shù)m的取值范圍.12m2m隨堂檢測(cè)隨堂檢測(cè)解析解析(1)h(x)=logax,h(x)=,h(1
16、)=1,a=e,h(x)=ln x.f(x)=mln x+x2+1,f (x)=+(m+1)x=,x(0,+).當(dāng)m+10,即m-1時(shí), f (x)0, f(x)在區(qū)間(0,+)上單調(diào)遞增;當(dāng)-1m0時(shí),令f (x)=0,得x=,f(x)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.綜上所述,當(dāng)m-1時(shí), f(x)在區(qū)間(0,+)上單調(diào)遞減;1lnxa1lna12mmx2(1)mxmx1mm0,1mm,1mm當(dāng)-1m0在區(qū)間(0,+)上恒成立,即f(x)1+ ln(-m)在區(qū)間(0,+)上恒成立.由(1)知,當(dāng)-1m1+ln(-m),0,1mm,1mm2m2m0,1mm,1mm1mm1mm2m即mln+11+ln(-m),整理得ln(m+1)-1,m-1,又-1m0,-1m0.故實(shí)數(shù)m的取值范圍為.1mm12m1mm2m1e1e11,0e