2020高中數(shù)學(xué) 第二章 變化率與導(dǎo)數(shù)及導(dǎo)數(shù)的應(yīng)用 導(dǎo)數(shù)應(yīng)用教案 北師大版選修1-1

上傳人:艷*** 文檔編號:110517930 上傳時間:2022-06-18 格式:DOC 頁數(shù):4 大?。?7KB
收藏 版權(quán)申訴 舉報 下載
2020高中數(shù)學(xué) 第二章 變化率與導(dǎo)數(shù)及導(dǎo)數(shù)的應(yīng)用 導(dǎo)數(shù)應(yīng)用教案 北師大版選修1-1_第1頁
第1頁 / 共4頁
2020高中數(shù)學(xué) 第二章 變化率與導(dǎo)數(shù)及導(dǎo)數(shù)的應(yīng)用 導(dǎo)數(shù)應(yīng)用教案 北師大版選修1-1_第2頁
第2頁 / 共4頁
2020高中數(shù)學(xué) 第二章 變化率與導(dǎo)數(shù)及導(dǎo)數(shù)的應(yīng)用 導(dǎo)數(shù)應(yīng)用教案 北師大版選修1-1_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020高中數(shù)學(xué) 第二章 變化率與導(dǎo)數(shù)及導(dǎo)數(shù)的應(yīng)用 導(dǎo)數(shù)應(yīng)用教案 北師大版選修1-1》由會員分享,可在線閱讀,更多相關(guān)《2020高中數(shù)學(xué) 第二章 變化率與導(dǎo)數(shù)及導(dǎo)數(shù)的應(yīng)用 導(dǎo)數(shù)應(yīng)用教案 北師大版選修1-1(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、導(dǎo)讀 復(fù)習(xí)總結(jié):導(dǎo)數(shù)應(yīng)用 1.了解導(dǎo)數(shù)概念的某些實(shí)際背景(如瞬時速度,加速度,光滑曲線切線的斜率等);掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義;理解導(dǎo)函數(shù)的概念. 2. 熟記八個基本導(dǎo)數(shù)公式(c,(m為有理數(shù)), 的導(dǎo)數(shù));掌握兩個函數(shù)和、差、積、商的求導(dǎo)法則,了解復(fù)合函數(shù)的求導(dǎo)法則,會求某些簡單函數(shù)的導(dǎo)數(shù). 3.理解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件(導(dǎo)數(shù)在極值點(diǎn)兩側(cè)異號);會求一些實(shí)際問題(一般指單峰函數(shù))的最大值和最小值. 知識網(wǎng)絡(luò) 高考導(dǎo)航 導(dǎo)數(shù)的應(yīng)用價值極高,主要涉及函數(shù)單調(diào)性、極大(小)值,以及最大(小)

2、值等,遇到有關(guān)問題要能自覺地運(yùn)用導(dǎo)數(shù). 典型例題 例1.求函數(shù)y=在x0到x0+Δx之間的平均變化率. 解 ∵Δy= 變式訓(xùn)練1. 求y=在x=x0處的導(dǎo)數(shù). 解 例2. 求下列各函數(shù)的導(dǎo)數(shù): (1) (2) (3) (4) 解 (1)∵ ∴y′ (2)方法一 y=(x2+3x+2)(x+3)=x3+6x2+11x+6,∴y′=3x2+12x+11. 方法二 = =(x+3)+(x+1)(x+2) =(x+2+x+1)(x+3)+(x+1)(x+2)=(2x+3)(x+3)+(x+1)(x

3、+2)=3x2+12x+11. (3)∵y= ∴ (4) , ∴ 變式訓(xùn)練2:求y=tanx的導(dǎo)數(shù). 解 y′ 例3. 已知曲線y= (1)求曲線在x=2處的切線方程; (2)求曲線過點(diǎn)(2,4)的切線方程. 解 (1)∵y′=x2,∴在點(diǎn)P(2,4)處的切線的斜率k=|x=2=4.  ∴曲線在點(diǎn)P(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0. (2)設(shè)曲線y=與過點(diǎn)P(2,4)的切線相切于點(diǎn), 則切線的斜率k=|=. ∴切線方程為即 ∵點(diǎn)P(2,4)在切線上,∴4= 即∴ ∴(x0+1)(x0-2)2

4、=0,解得x0=-1或x0=2, 故所求的切線方程為4x-y-4=0或x-y+2=0. 變式訓(xùn)練3:若直線y=kx與曲線y=x3-3x2+2x相切,則k= . 答案 2或 例4. 設(shè)函數(shù) (a,b∈Z),曲線在點(diǎn)處的切線方程為y=3. (1)求的解析式; (2)證明:曲線上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值. (1)解 , 于是解得或 因?yàn)閍,bZ,故 (2)證明 在曲線上任取一點(diǎn). 由知,過此點(diǎn)的切線方程為 . 令x=1,得,切線與直線x=1交點(diǎn)為. 令y=x,得,切線與直線y=x的交點(diǎn)為. 直

5、線x=1與直線y=x的交點(diǎn)為(1,1). 從而所圍三角形的面積為. 所以,所圍三角形的面積為定值2. 變式訓(xùn)練4:偶函數(shù)f(x)=ax4+bx3+cx2+dx+e的圖象過點(diǎn)P(0,1),且在x=1處的切線方程為y=x-2,求y=f(x)的解析式. 解 ∵f(x)的圖象過點(diǎn)P(0,1),∴e=1. ① 又∵f(x)為偶函數(shù),∴f(-x)=f(x). 故ax4+bx3+cx2+dx+e=ax4-bx3+cx2-dx+e. ∴b=0,d=0. ② ∴f(x)=ax4+cx2+1. ∵函數(shù)f(x)在x=1處的切線方程為y=x-2,∴可得切點(diǎn)為(1,-1). ∴a+c+1=-1. ③ ∵=(4ax3+2cx)|x=1=4a+2c,∴4a+2c=1. ④ 由③④得a=,c=.∴函數(shù)y=f(x)的解析式為 小結(jié)歸納 1.理解平均變化率的實(shí)際意義和數(shù)學(xué)意義。 2.要熟記求導(dǎo)公式,對于復(fù)合函數(shù)的導(dǎo)數(shù)要層層求導(dǎo). 3.搞清導(dǎo)數(shù)的幾何意義,為解決實(shí)際問題,如切線、加速度等問題打下理論基礎(chǔ).

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!