2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 3.3 三角變換與解三角形學(xué)案 理
《2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 3.3 三角變換與解三角形學(xué)案 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 3.3 三角變換與解三角形學(xué)案 理(16頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第3講 三角變換與解三角形 考點(diǎn)1 三角恒等變換 1.三角求值“三大類型” “給角求值”、“給值求值”、“給值求角”. 2.三角函數(shù)恒等變換“四大策略” (1)常值代換:特別是“1”的代換,1=sin2θ+cos2θ=tan45°等; (2)項(xiàng)的分拆與角的配湊:如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等; (3)降次與升次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦. [例1] (1)[2019·全國卷Ⅱ]已知α∈,2sin 2α=cos 2α+1,則sin α=( ) A. B. C.
2、 D. (2)[2019·天津南開大學(xué)附屬中學(xué)月考]已知sin α=,sin β=,且α,β為銳角,則α+β為( ) A. B.或 C. D. 【解析】 (1)本題主要考查同角三角函數(shù)的基本關(guān)系、二倍角公式,意在考查考生的邏輯思維能力、運(yùn)算求解能力,考查的核心素養(yǎng)是邏輯推理、數(shù)學(xué)運(yùn)算. 由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin2α+1,即2sin αcos α=1-sin2α.因?yàn)棣痢?,所以cos α=,所以2sin α=1-sin2α,解得sin α=,故選B. (2)∵sin α=,sin β=,且α,β為銳角,∴cos α=,co
3、s β=,∴cos(α+β)=×-×=,又0<α+β<π,∴α+β=.故選A. 【答案】 (1)B (2)A 化簡三角函數(shù)式的規(guī)律 規(guī)律 解讀 一角 一看“角”,這是最重要的一環(huán),通過角之間的差別與聯(lián)系,把角進(jìn)行合理地拆分,從而正確使用公式 二名 二看“函數(shù)名稱”,看函數(shù)名稱之間的差異,從而確定使用的公式,常見的有“弦切互化” 三結(jié)構(gòu) 三看“結(jié)構(gòu)特征”,分析結(jié)構(gòu)特征,找到變形的方向,常見的有“遇到分式要通分”,“遇根式化被開方式為完全平方式”等 溫馨 提醒 (1)常用技巧:弦切互化,異名化同名,異角化同角,降冪或升冪,“1”的代換等. (2)根式的化簡常
4、常需要升冪去根號(hào),在化簡過程中注意角的范圍,以確定三角函數(shù)值的正負(fù) 『對(duì)接訓(xùn)練』 1.[2019·山東濟(jì)南長清月考]若=sin 2θ,則sin2θ=( ) A. B. C.- D.- 解析:通解 ∵=sin 2θ,∴=2sin=sin 2θ,∴2sin=-cos,∴2sin2-2sin-=0,得sin=-, ∴sin 2θ=-cos=2sin2-1=-.故選C. 優(yōu)解 ∵=sin 2θ,∴=sin 2θ, ∴2(cos θ+sin θ)=sin 2θ,∴3sin22θ-4sin 2θ-4=0,得sin 2θ=-.故選C. 答案:C 2.[2019·全國高考信息
5、卷]若α為第二象限角,且sin 2α=sincos(π-α),則cos的值為( ) A.- B. C. D.- 解析:∵sin 2α=sincos(π-α),∴2sin αcos α=-cos2α,∵α是第二象限角,∴cos α≠0,2sin α=-cos α,∴4sin2α=cos2α=1-sin2α,∴sin2α=, ∴cos=cos 2α+sin 2α=cos2α-sin2α+2sin αcos α=-sin2 α=-.故選A. 答案:A 考點(diǎn)2 利用正、余弦定理解三角形 1.正弦定理及其變形 在△ABC中,===2R(R為△ABC的外接圓半徑).變形:a=2R
6、sinA,sinA=,a:b:c=sinA:sinB:sinC等. 2.余弦定理及其變形 在△ABC中,a2=b2+c2-2bccosA; 變形:b2+c2-a2=2bccosA,cosA=. 3.三角形面積公式 S△ABC=absinC=bcsinA=acsinB. [例2] (1)[2019·全國卷Ⅱ]△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若b=6,a=2c,B=,則△ABC的面積為________; (2)[2019·江西南昌段考]在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若asin Bcos C+csin Bcos A=b,且a>b,則B等于
7、( ) A. B. C. D. 【解析】 (1)本題主要考查余弦定理、三角形的面積公式,意在考查考生的邏輯思維能力、運(yùn)算求解能力,考查方程思想,考查的核心素養(yǎng)是邏輯推理、數(shù)學(xué)運(yùn)算. 解法一 因?yàn)閍=2c,b=6,B=,所以由余弦定理b2=a2+c2-2accos B,得62=(2c)2+c2-2×2c×ccos,得c=2,所以a=4,所以△ABC的面積S=acsin B=×4×2×sin=6. 解法二 因?yàn)閍=2c,b=6,B=,所以由余弦定理b2=a2+c2-2accos B,得62=(2c)2+c2-2×2c×ccos,得c=2,所以a=4,所以a2=b2+c2,所以A=,
8、所以△ABC的面積S=×2×6=6. (2)因?yàn)閍sin Bcos C+csin Bcos A=b,所以由正弦定理得sin Asin Bcos C+sin Csin Bcos A=sin B,又sin B≠0,所以sin Acos C+cos Asin C=,即sin(A+C)=,因?yàn)锳+C=π-B,所以sin(π-B)=,即sin B=.又a>b,所以A>B,所以B為銳角,所以B=.故選D. 【答案】 (1)6 (2)D (1)正、余弦定理的適用條件 ①“已知兩角和一邊”或“已知兩邊和其中一邊的對(duì)角”應(yīng)采用正弦定理. ②“已知兩邊和這兩邊的夾角”或“已知三角形的三邊”應(yīng)采用
9、余弦定理. (2)三角形面積公式的應(yīng)用原則 ①對(duì)于面積公式S=absinC=acsinB=bcsinA,一般是已知哪一個(gè)角就使用含哪個(gè)角的公式. ②與面積有關(guān)的問題,一般要利用正弦定理或余弦定理進(jìn)行邊和角的互化. 『對(duì)接訓(xùn)練』 3.[2019·廣西南寧摸底聯(lián)考]在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知c=,C=,sin B=2sin A,則△ABC的周長是( ) A.3 B.2+ C.3+ D.4+ 解析:因?yàn)閟in B=2sin A,所以由正弦定理得b=2a,由余弦定理得c2=a2+b2-2abcos C=a2+4a2-2a2=3a2,又c=,所以a=
10、1,b=2.故△ABC的周長是3+.故選C. 答案:C 4.[2019·福建泉州階段檢測]已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若cos C=,bcos A+acosB=2,則△ABC的外接圓面積為( ) A.4π B.8π C.9π D.36π 解析:由余弦定理得b·+a·=2,即=2,得c=2,由cos C=得sin C=.設(shè)△ABC外接圓的半徑為R,由正弦定理可得2R==6,得R=3,所以△ABC的外接圓面積為πR2=9π.故選C. 答案:C 考點(diǎn)3 正、余弦定理的綜合應(yīng)用 [例3] [2019·全國卷Ⅲ]△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b
11、,c.已知asin=bsin A. (1)求B; (2)若△ABC為銳角三角形,且c=1,求△ABC面積的取值范圍. 【解析】 本題主要考查正弦定理、余弦定理、三角形的面積公式等知識(shí),考查考生的化歸與轉(zhuǎn)化能力、運(yùn)算求解能力,考查的核心素養(yǎng)是數(shù)學(xué)運(yùn)算. (1)由題設(shè)與正弦定理得sin Asin=sin Bsin A. 因?yàn)閟in A≠0,所以sin=sin B. 由A+B+C=180°,可得sin=cos,故cos=2sincos. 因?yàn)閏os≠0,故sin=.又B是三角形內(nèi)角,因此B=60°. (2)由題設(shè)及(1)知△ABC的面積S△ABC=a. 由正弦定理得a===+.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第七章-透射電子顯微鏡
- 群落的結(jié)構(gòu)(課件)
- 焊接基礎(chǔ)知識(shí)
- 水文地質(zhì)學(xué)課件
- 某公司員工工傷安全管理規(guī)定
- 消防培訓(xùn)課件:安全檢修(要點(diǎn))
- 某公司安全生產(chǎn)考核與獎(jiǎng)懲辦法范文
- 安全作業(yè)活動(dòng)安全排查表
- 某公司危險(xiǎn)源安全辨識(shí)、分類和風(fēng)險(xiǎn)評(píng)價(jià)、分級(jí)辦法
- 某公司消防安全常識(shí)培訓(xùn)資料
- 安全培訓(xùn)資料:危險(xiǎn)化學(xué)品的類別
- 中小學(xué)寒假學(xué)習(xí)計(jì)劃快樂度寒假充實(shí)促成長
- 紅色插畫風(fēng)輸血相關(guān)知識(shí)培訓(xùn)臨床輸血流程常見輸血不良反應(yīng)
- 14.應(yīng)急救援隊(duì)伍訓(xùn)練記錄
- 某公司各部門及人員安全生產(chǎn)責(zé)任制