高中數(shù)學(xué) 第三章 空間向量與立體幾何 課時作業(yè)(二十二)用向量方法求空間中的角 新人教B版選修2-1

上傳人:xt****7 文檔編號:105480237 上傳時間:2022-06-12 格式:DOC 頁數(shù):10 大?。?.74MB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué) 第三章 空間向量與立體幾何 課時作業(yè)(二十二)用向量方法求空間中的角 新人教B版選修2-1_第1頁
第1頁 / 共10頁
高中數(shù)學(xué) 第三章 空間向量與立體幾何 課時作業(yè)(二十二)用向量方法求空間中的角 新人教B版選修2-1_第2頁
第2頁 / 共10頁
高中數(shù)學(xué) 第三章 空間向量與立體幾何 課時作業(yè)(二十二)用向量方法求空間中的角 新人教B版選修2-1_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 第三章 空間向量與立體幾何 課時作業(yè)(二十二)用向量方法求空間中的角 新人教B版選修2-1》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第三章 空間向量與立體幾何 課時作業(yè)(二十二)用向量方法求空間中的角 新人教B版選修2-1(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、高中數(shù)學(xué) 第三章 空間向量與立體幾何 課時作業(yè)(二十二)用向量方法求空間中的角 新人教B版選修2-1 1.如圖,在空間直角坐標(biāo)系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,BC1與直線AB1夾角的余弦值為(  ) A.      B. C. D. 解析:設(shè)CB=1,則A(2,0,0),B1(0,2,1),C1(0,2,0),B(0,0,1),=(0,2,-1),=(-2,2,1). cos〈,〉===. 答案:A 2.在正方體ABCD-A1B1C1D1中,E是C1C的中點,則直線BE與平面B1BD所成的角的正弦值為(  ) A.- B. C

2、.- D. 解析:建立如圖空間直角坐標(biāo)系,設(shè)正方體的棱長為2,則D(0,0,0),B(2,2,0),B1(2,2,2),E(0,2,1). ∴=(-2,-2,0),=(0,0,2),=(-2,0,1). 設(shè)平面B1BD的法向量為n=(x,y,z). ∵n⊥,n⊥, ∴∴ 令y=1,則n=(-1,1,0). ∴cos〈n,〉==, 設(shè)直線BE與平面B1BD所成角為θ, 則sinθ=|cos〈n,〉|=. 答案:B 3.在長方體ABCD-A1B1C1D1中,AB=2,BC=2,DD1=3,則AC與BD1所成角的余弦值為(  ) A.0 B. C.- D

3、. 解析:建立如圖坐標(biāo)系,則D1(0,0,3),B(2,2,0),A(2,0,0),C(0,2,0), ∴=(-2,-2,3),=(-2,2,0). ∴cos〈,〉==0. ∴〈,〉=90°,其余弦值為0. 答案:A 4.正方形ABCD所在平面外有一點P,PA⊥平面ABCD.若PA=AB,則平面PAB與平面PCD所成的二面角的大小為(  ) A.30° B.45° C.60° D.90° 解析:建系如圖,設(shè)AB=1,則A(0,0,0),B(0,1,0),P(0,0,1),D(1,0,0),C(1,1,0). 平面PAB的法向量為n1=(1,0,0).設(shè)平面PCD

4、的法向量n2=(x,y,z), 則得 令x=1,則z=1. ∴n2=(1,0,1),cos〈n1,n2〉==. ∴平面PAB與平面PCD所成的二面角的余弦值為.∴此角的大小為45°. 答案:B 5.在長方體ABCD-A1B1C1D1中,B1C和C1D與底面所成角分別為60°和45°,則異面直線B1C和C1D所成角的余弦值為(  ) A. B. C. D. 解析:建立如圖的空間直角坐標(biāo)系, 可知∠CB1C1=60°,∠DC1D1=45°, 設(shè)B1C1=1,CC1==DD1. ∴C1D1=,則有B1(,0,0),C(,1,),C1(,1,0),D(0,1,). ∴

5、=(0,1,),=(-,0,). ∴cos〈,〉===. 答案:A 6.已知直角△ABC中,∠C=90°,∠B=30°,AB=4,D為AB的中點,沿中線將△ACD折起使得AB=,則二面角A-CD-B的大小為(  ) A.60° B.90° C.120° D.150° 解析:取CD中點E,在平面BCD內(nèi)過B點作BF⊥CD,交CD延長線于F. 據(jù)題意知AE⊥CD,AE=BF=,EF=2,AB=. 且〈,〉為二面角的平面角, 由=(++)2得 13=3+3+4+2×3×cos〈,〉, ∴cos〈,〉=-. ∴〈,〉=120°. 即所求的二面角為120°. 答案:

6、C 7.直線l的方向向量a=(-2,3,2),平面α的一個法向量n=(4,0,1),則直線l與平面α所成角的正弦值為__________. 解析:設(shè)直線l與平面α所成的角是θ,a,n所成的角為β, sinθ=|cosβ|==. 答案: 8.在正方體ABCD-A1B1C1D1中,M,N分別是棱AA1和BB1的中點,則sin〈,〉=________. 解析:建立如圖坐標(biāo)系,設(shè)正方體棱長為2. 可知=(2,-2,1),=(2,2,-1). cos〈,〉=-. ∴sin〈,〉=. 答案: 9.如圖正方體ABCD-A1B1C1D1的棱長為1,O是平面A1B1C1D1的中心,

7、則BO與平面ABC1D1所成角的正弦值為________. 解析:建立坐標(biāo)系如圖, 則B(1,1,0),O, =(1,0,1)是平面ABC1D1的一個法向量. 又=, ∴BO與平面ABC1D1所成角的正弦值為==. 答案: 10.如圖,在空間直角坐標(biāo)系中,BC=2,原點O是BC的中點,點A的坐標(biāo)是,點D在平面yOz上,且∠BDC=90°,∠DCB=30°. (1)求向量的坐標(biāo); (2)設(shè)向量和的夾角為θ,求cosθ的值. 解:(1)過D作DE⊥BC,垂足為E, 在Rt△BDC中,由∠BDC=90°,∠DCB=30°,BC=2,得BD=1,CD=, ∴DE

8、=CD·sin30°=. OE=OB-BE=OB-BD·cos60°=1-=. ∴D點的坐標(biāo)為, 即向量=. (2)依題意,=,=(0,-1,0),=(0,1,0), 所以=-=,=(0,2,0). 則cosθ==-. B組 能力提升 11.如圖所示,已知點P為菱形ABCD所在平面外一點,且PA⊥平面ABCD,PA=AD=AC,點F為PC中點,則二面角C-BF-D的正切值為(  ) A. B. C. D. 解析:設(shè)AC∩BD=O,連接OF, 以O(shè)為原點,OB,OC,OF所在直線分別為x,y,z軸, 建立空間直角坐標(biāo)系, 設(shè)PA=AD=AC=1,則BD=,

9、 ∴B,F(xiàn),C,D. ∴=,且為平面BDF的一個法向量. 由=,=可得平面BCF的一個法向量n=(1,,). ∴cos〈n,〉=,sin〈n,〉=. ∴tan〈n,〉=. 答案:D 12.如圖,已知正三棱柱ABC-A1B1C1的各條棱長都相等,M是側(cè)棱CC1的中點,則異面直線AB1和BM所成的角的大小是________. 解析:不妨設(shè)棱長為2, 則=-,=+, cos〈,〉= ==0. 故AB1與BM的夾角為90°. 答案:90° 13.如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分別是A1B、B1C1的中點. (1)求證

10、:MN⊥平面A1BC; (2)求直線BC1和平面A1BC所成角的大?。? 解析:(1)證明:根據(jù)題意CA、CB、CC1兩兩垂直,以C為原點,CA、CB、CC1所在直線分別為x軸、y軸、z軸建立如圖所示的空間直角坐標(biāo)系, 設(shè)AC=BC=CC1=a, 則B(0,a,0),B1(0,a,a),C(0,0,0), C1(0,0,a),A1(a,0,a),M,N. 所以=(a,-a,a),=(a,0,a), =. 于是·=0,·=0, 即MN⊥BA1,MN⊥CA1. 又BA1∩CA1=A1,故MN⊥平面A1BC. (2)因為MN⊥平面A1BC, 則為平面A1BC的法向量, 又

11、=(0,-a,a), 則cos〈,〉===, 所以〈,〉=60°. 故直線BC1和平面A1BC所成的角為30°. 14.如圖,在五面體ABCDEF中,F(xiàn)A⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M為EC的中點,AF=AB=BC=FE=AD. (1)求異面直線BF與DE所成的角的大??; (2)證明平面AMD⊥平面CDE; (3)求二面角A-CD-E的余弦值. 解析:如圖所示,建立空間直角坐標(biāo)系,點A為坐標(biāo)原點. 設(shè)AB=1,依題意得B(1,0,0),C(1,1,0),D(0,2,0),E(0,1,1),F(xiàn)(0,0,1),M. (1)=(-1,0,1),=(0

12、,-1,1), 于是cos〈,〉===. 所以異面直線BF與DE所成的角的大小為60°. (2)證明:由=,=(-1,0,1),=(0,2,0),可得·=0,·=0. 因此,CE⊥AM,CE⊥AD. 15.如圖所示,已知在四面體ABCD中,O為BD的中點,CA=CB=CD=BD=2,AB=AD=. (1)求證:AO⊥平面BCD; (2)求異面直線AB與CD所成角的余弦值. 解:(1)證明:因為BO=DO,AB=AD,所以AO⊥BD. 因為BO=DO,BC=CD,所以CO⊥BD. 在△AOC中,由已知可得AO=1,CO=,而AC=2,所以AO2+CO2=AC2, 所以∠AOC=90°,即AO⊥OC. 因為BD∩OC=O,所以AO⊥平面BCD. (2)以O(shè)為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系, 則B(1,0,0),D(-1,0,0),C(0,,0),A(0,0,1),=(-1,0,1),=(-1,-,0), 所以cos〈,〉==,所以異面直線AB與CD所成角的余弦值為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!