中考數(shù)學(xué)一輪專題復(fù)習(xí) 全等三角形綜合復(fù)習(xí)

上傳人:xt****7 文檔編號(hào):104743234 上傳時(shí)間:2022-06-11 格式:DOC 頁(yè)數(shù):15 大?。?22.02KB
收藏 版權(quán)申訴 舉報(bào) 下載
中考數(shù)學(xué)一輪專題復(fù)習(xí) 全等三角形綜合復(fù)習(xí)_第1頁(yè)
第1頁(yè) / 共15頁(yè)
中考數(shù)學(xué)一輪專題復(fù)習(xí) 全等三角形綜合復(fù)習(xí)_第2頁(yè)
第2頁(yè) / 共15頁(yè)
中考數(shù)學(xué)一輪專題復(fù)習(xí) 全等三角形綜合復(fù)習(xí)_第3頁(yè)
第3頁(yè) / 共15頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《中考數(shù)學(xué)一輪專題復(fù)習(xí) 全等三角形綜合復(fù)習(xí)》由會(huì)員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)一輪專題復(fù)習(xí) 全等三角形綜合復(fù)習(xí)(15頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、中考數(shù)學(xué)一輪專題復(fù)習(xí) 全等三角形綜合復(fù)習(xí) 一 選擇題: 1.下列命題中: (1)形狀相同的兩個(gè)三角形是全等形; (2)在兩個(gè)全等三角形中,相等的角是對(duì)應(yīng)角,相等的邊是對(duì)應(yīng)邊; (3)全等三角形對(duì)應(yīng)邊上的高、中線及對(duì)應(yīng)角平分線分別相等,其中真命題的個(gè)數(shù)有(  ?。? A.3個(gè)? B.2個(gè)? C.1個(gè)? D.0個(gè) 2.已知△ABC≌△DEF,∠A=80°,∠E=50°,則∠F的度數(shù)為(??? ) A.30° ??????? B.50°?? ??????C.80° ??? ??????

2、D.100° 3.下列各組圖形中,是全等形的是(???? ) A.兩個(gè)含60°角的直角三角形;????? B.腰對(duì)應(yīng)相等的兩個(gè)等腰直角三角形; C.邊長(zhǎng)為3和5的兩個(gè)等腰三角形;? ? D.一個(gè)鈍角相等的兩個(gè)等腰三角形 4.如圖,△ABD≌△ACE,∠AEC=110°,則∠DAE的度數(shù)為(???? ) ? A.30°???????? B.40°???????? C.50°??????? D.60° 5.如圖,在∠AOB的兩邊上截取AO=BO ,OC=OD,連接AD、BC交于點(diǎn)P,連接OP,則圖中全等三角形共有(??? )對(duì) A.2??? ?? B.

3、3???? ?? C.4??? ?? D.5 6.已知圖中的兩個(gè)三角形全等,則∠α的度數(shù)是(  ?。?   A.72° B.60° C.58° D.50° 7.如圖,△ABC≌△DEF,則此圖中相等的線段有(  ?。? A.1對(duì) ?????????B.2對(duì) ?????????C.3對(duì) ??????????D.4對(duì) ? 8.用直尺和圓規(guī)作一個(gè)角的平分線的示意圖如圖所示,則能說(shuō)明AOC=BOC的依據(jù)是( ) A. SSS???? ?B. ASA??? ?C. AAS??

4、 ? D.角平分線上的點(diǎn)到角兩邊距離相等 ? 9.小明不慎將一塊三角形的玻璃碎成如圖所示的四塊(圖中所標(biāo)1、2、3、4),你認(rèn)為將其中的哪一塊帶去,就能配一塊與原來(lái)大小一樣的三角形玻璃?應(yīng)該帶第_____塊去,這利用了三角形全等中的_____原理( ?。? A.2;SAS??? B.4;ASA??? C.2;AAS??? D.4;SAS 10.工人師傅常用角尺平分一個(gè)任意角.做法如下:如圖2所示,∠AOB是一個(gè)任意角,在邊OA,OB上分別取OM=ON,移動(dòng)角尺,使角尺兩邊相同的刻度分別與M,N重合.過(guò)角尺頂點(diǎn)C的射線OC即是∠AOB的平分線.這種做法的道理是(??? )

5、 (A)HL?????? (B)SSS??????? (C)SAS?????? (D)ASA 11.如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=3,PB=4,PC=5,以BC為邊在△ABC外作△BQC△BPA,連接PQ,則以下結(jié)論錯(cuò)誤的是( ) ?? A. △BPQ是等邊三角形?????? B. △PCQ是直角三角形 C. APB=150°???????? D. APC=135° 12.如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF,結(jié)論:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正確的有(   ) ???

6、????????????????????????????????? A.1個(gè)???????? B.2個(gè)????????? C.3個(gè)???????? D.4個(gè)??????? 13.在如圖所示的5×5方格中,每個(gè)小方格都是邊長(zhǎng)為1的正方形,△ABC是格點(diǎn)三角形(即頂點(diǎn)恰好是正方形的頂點(diǎn)),則與△ABC有一條公共邊且全等的所有格點(diǎn)三角形的個(gè)數(shù)是( ?。? A.1?? ? B.2??? C.3??? D.4 14.如圖,在線段AE同側(cè)作兩個(gè)等邊三角形△ABC和△CDE(∠ACE<120°),點(diǎn)P與點(diǎn)M分別是線段BE和AD的中點(diǎn),

7、則△CPM是( ?。? A.鈍角三角形? ? B.直角三角形?? C.等邊三角形?? D.非等腰三角形 15.如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正確的結(jié)論共有(??? ) A.4個(gè)???? ? B.3個(gè)?????? ? C.2個(gè)???????? D.1個(gè) 16.為了加快災(zāi)后重建的步伐,我市某鎮(zhèn)要在三條公路圍成的一塊平地上修建一個(gè)砂石場(chǎng),如圖,要使這個(gè)砂石場(chǎng)到三條公路的

8、距離相等,則可供選擇的地址(? ) A.僅有一處? ?? B.有四處?? ? C.有七處??? D.有無(wú)數(shù)處 17.如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為50和38,則△EDF的面積為(  ?。? A.12 B.6 C.10 D.8 18.正方形ABCD、正方形BEFG和正方形RKPF的位置如圖所示,點(diǎn)G在線段DK上,正方形BEFG的邊長(zhǎng)為4,則△DEK的面積為

9、(  ) A.10?????????? B.12?????????? C.14?????????? D.16 19.如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=135°.其中正確的個(gè)數(shù)是(???? ) A.5 ?????? ?B.4 ?????? ??C.3 ??? ????D.2 20.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC的中點(diǎn),兩

10、邊PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),連接EF交AP于點(diǎn)G,給出以下五個(gè)結(jié)論:①∠B=∠C=45°;②AE=CF,③AP=EF,④△EPF是等腰直角三角形,⑤四邊形AEPF的面積是△ABC面積的一半.其中正確的結(jié)論是(   )??????????????????????? A.只有①?? ? B.①②④???? ?? C.①②③④????? D.①②④⑤ 二 填空題: 21.如圖,已知方格紙中是4個(gè)相同的正方形,則∠1+∠2+∠3=_______. 22.△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,則∠DEF=______. 2

11、3.如圖,在△ABC中,AD為∠BAC的平分線,DE⊥AB于E,DF⊥AC于F,△ABC面積是45cm2,AB=16cm,AC=14cm,則DE=    . 24.如圖,Rt△ABC中∠A=90°,∠C=30°,BD平分∠ABC且與AC邊交于點(diǎn)D,AD=2,則點(diǎn)D到邊BC的距離是   . 25.如圖,直線a經(jīng)過(guò)正方形ABCD的頂點(diǎn)A,分別過(guò)正方形的頂點(diǎn)B,D作BF⊥a于點(diǎn)F,DE⊥a于點(diǎn)E,若DE=8,BF=5,則EF的長(zhǎng)為 26.如圖,△ABC的角平分線交于點(diǎn)P,已知AB,BC,CA的長(zhǎng)分別為5,7,6,則S△ABP∶S△BPC∶S

12、△APC=___________________. 27.如圖,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,則△POA的面積等于    cm2. 28.如圖,在△ABC中,AB=5,AC=3,AD、AE分別為△ABC的中線和角平分線,過(guò)點(diǎn)C作CH⊥AE于點(diǎn)H,并延長(zhǎng)交AB于點(diǎn)F,連結(jié)DH,則線段DH的長(zhǎng)為     ?。?   29.如圖,在四邊形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于點(diǎn)P,若四邊形ABCD的面積是9,則DP的長(zhǎng)是   . 30.如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥BC交AB于

13、E,交AC于F,過(guò)點(diǎn)O作OD⊥AC于D.下列四個(gè)結(jié)論:①∠BOC=90o+∠A; ②EF=BE+CF;③設(shè)OD=m,AE+AF=n,則S△AEF=mn; ④EF是△ABC的中位線.其中正確的結(jié)論是????????????? . 三 簡(jiǎn)答題: 31.如圖:某地有兩所大學(xué)和兩條相交叉的公路,(點(diǎn)M,N表示大學(xué),AO,BO表示公路).現(xiàn)計(jì)劃修建一座物資倉(cāng)庫(kù),希望倉(cāng)庫(kù)到兩所大學(xué)的距離相等,到兩條公路的距離也相等。你能確定倉(cāng)庫(kù)應(yīng)該建在什么位置嗎?在所給的圖形中畫(huà)出你的設(shè)計(jì)方案;(保留作圖痕跡,不寫做法) 32.如圖,在△ABC中,AB=AC,點(diǎn)D,E,F(xiàn)分別在邊AB

14、,BC,AC上,且BD=CE,BE=CF,如果點(diǎn)G為DF的中點(diǎn),那么EG與DF垂直嗎? 33.如圖所示,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn). (1)求證:△BCD≌△ACE;(2)若AE=8,DE=10,求AB的長(zhǎng)度. 34.如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF, (1)求證:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的長(zhǎng). 35.如圖,M是△ABC的邊BC的中點(diǎn),AN平分∠BAC,BNAN于點(diǎn)N,

15、延長(zhǎng)BN交AC于點(diǎn)D,已知AB=10,BC=15,MN=3. (1)求證:BN=DN;(2)求△ABC的周長(zhǎng). 36.如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F(xiàn)在AC上,BD=DF.說(shuō)明: (1)CD=EB;(2)AB=AF+2EB.   37.已知:如圖1,點(diǎn)A是線段DE上一點(diǎn),∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,?????????? (1)求證:DE=BD+CE; (2)如果是如圖2這個(gè)圖形,我們能得到什么結(jié)論?并證明.???????????? ?????

16、 38.在△ABC中,AB=AC,∠BAC=100°,點(diǎn)D在BC邊上,△ABD和△AFD關(guān)于直線AD對(duì)稱,∠FAC的平分線交BC于點(diǎn)G,連接FG.(12分) (1)求∠DFG的度數(shù); (2)設(shè)∠BAD=θ, ①當(dāng)θ為何值時(shí),△DFG為等腰三角形; ②△DFG有可能是直角三角形嗎?若有,請(qǐng)求出相應(yīng)的θ值;若沒(méi)有,請(qǐng)說(shuō)明理由. 39.已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,連結(jié)EC,取EC的中點(diǎn)M,連結(jié)DM和BM.  (1)若點(diǎn)D在邊AC上,點(diǎn)E在邊AB上,且與點(diǎn)B不重合,如圖①,探索BM、DM的關(guān)系并給予證明

17、; (2)如果將圖①中的△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)小于45°的角,如圖②,那么(1)中的結(jié)論是否仍成立? 如果不成立,請(qǐng)舉出反例;如果成立,請(qǐng)給予證明.    40.在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC. ?問(wèn)題發(fā)現(xiàn): ?(1)如果AB=AC,∠BAC=90°,當(dāng)點(diǎn)D在線段BC上時(shí)(不與點(diǎn)B重合),如圖1,請(qǐng)你判斷線段CE,BD之間的位置關(guān)系和數(shù)量關(guān)系(直接寫出結(jié)論); ?拓展探究: ?(2)如果AB=AC,∠BAC= 90°,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線

18、上時(shí),如圖2, 請(qǐng)判斷①中的結(jié)論是否仍然成立,如成立,請(qǐng)證明你的結(jié)論。 ?問(wèn)題解決: ?(3)如圖3,AB≠AC,∠BAC≠90。,若點(diǎn)D在線段BC上運(yùn)動(dòng),試探究:當(dāng)銳角∠ACB等于度時(shí),線段CE和BD之間的位置關(guān)系仍然成立(點(diǎn)C、E重合除外)。此時(shí)作DF⊥AD交線段CE于點(diǎn)F,AC=3,線段CF長(zhǎng)的最大值是??????? . 參考答案 1、C 2、B??3、B 4、B? 5、C? 6、D? 7、D? 8、B 9、B 10、B 11、B 12、C??????

19、 13、D 14、C 15、A 16、A 17、D 18、D. 19、A 20、D.?? 21、90°?? 22、40° 23、3 解:∵AD為∠BAC的平分線,DE⊥AB,DF⊥AC,∴DE=DF, ∵△ABC面積是45cm2,∴×16?DE+×14?DF=45,解得DE=3cm.故答案為:3. 24、2 25、13__. 26、5∶7∶6  27、 12 cm2. 28、1; 29、3 30、①②③ 31、畫(huà)圖略; 32、【解答】解:連接DE,EF, ∵AB=AC,∴∠B=∠C, 在△BDE和△CFE中,,∴△BDE≌△CFE

20、(SAS),∴DE=EF, 在在△DGE和△FGE中,,∴△DGE≌△FGE(SSS),∴∠DGE=∠FGE, ∵∠DGE+∠FGE=180°,∴∠DGE=∠FGE=90°,∴EG⊥DF. 33、【解答】(1)證明:∵△ACB與△ECD都是等腰直角三角形, ∴CE=CD,AC=BC,∠ACB=∠ECD=90°,∠B=∠BAC=45°,∴∠ACE=∠BCD=90°﹣∠ACD, 在△ACE和△BCD中,,∴△BCD≌△ACE(SAS); (2)解:∵△BCD≌△ACE,∴BD=AE=8,∠EAC=∠B=45°,∴∠EAD=45°+45°=90°, 在Rt△EAD中,由勾股定理得:AD

21、===6,∴AB=BD+AD=8+6=14. 34、【解答】(1)證明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°, ∴在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF, ∵DE⊥AB,DF⊥AC,∴AD平分∠BAC; (2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4, ∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12. 35、(1)證明:AN平分∠BAC,BNAN于點(diǎn)N, 從而B(niǎo)N=DN; (2)解:由(1)知點(diǎn)N是BD的中點(diǎn),而M是△ABC的邊BC的中點(diǎn), MN是CD的中位線

22、,從而CD=2MN=2×3=6 由(1)知AD=AB=10,AC=AD+DC=10+6=16△ABC的周長(zhǎng)為:AB+BC+AC=10+15+16 36、【解答】證明:(1)∵AD是∠BAC的平分線,DE⊥AB,DC⊥AC,∴DE=DC, 在Rt△CFD和Rt△EBD中,,∴Rt△CFD≌Rt△EBD(HL),∴CD=EB; (2)在△ACD和△AED中, ,∴△ACD≌△AED(AAS),∴AC=AE,∴AB=AE+EB=AC+EB=AF+FC+EB=AF+2EB. 37、??????? 【解答】證明:(1)∵BD⊥DE,CE⊥DE,??????????????????????

23、???? ∴∠D=∠E=90°,∴∠DBA+∠DAB=90°,∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠DBA=∠CAE, ∵AB=AC,∴△ADB≌△CEA,∴BD=AE,CE=AD,∴DE=AD+AE=CE+BD;???? (2)BD=DE+CE,理由是: ∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,∴∠ABD+∠BAD=90°,????????? ∵∠BAC=90°,∴∠ABD+∠EAC=90°,∴∠BAD=∠EAC,???????????? ∵AB=AC,∴△ADB≌△CEA,∴BD=AE,CE=AD,?? ∵AE=AD+DE,∴BD=C

24、E+DE.? ??? 38、 39、(1)BM⊥DM且BM=DM 在Rt△ABE中,M是斜邊CE的中點(diǎn),∴BM=EC,同理可得DM=CE∴BM=DM ∵BM=CM=EC,∴∠MCB=∠MBC ∵∠EMB=∠MBC+∠MCB∴∠EMB=2∠MCB,同理,∠DME=2∠DCM ∴∠EMB+∠DME=2∠MCB+2∠DCM=2(∠MCB+∠DCM﹚=2∠BCA ∵AB=AC∴∠A=∠ACB=45o∴∠DMB=2×45o=90o∴DM⊥BM (2)延長(zhǎng)DM至N,使DM=MN,連接CN,BD,BN 易證△EDM≌△CNM?? ∴CN=DE??∵AD=DE?∴DE=CN 易證∠DEC+∠ECA+∠DAC=90o?∴∠DEC+∠ECA+45o-∠BAD=90o ∴∠NCM+45o-∠BCM-∠BAD+45o=90o?? ∴∠NCM-∠BCM=∠BAD,即∠BCN=∠BAD????? ∴易證△BAD≌△BCN??? ∴BD=BN ∵DM=MN? ∴BM⊥DM 又∵易證△DBN為Rt△,∴BM=DM=DN。 40、略;

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!