高考數(shù)學(xué)大二輪刷題首選卷理數(shù)文檔:第一部分 考點(diǎn)十六 直線與圓錐曲線綜合問題
《高考數(shù)學(xué)大二輪刷題首選卷理數(shù)文檔:第一部分 考點(diǎn)十六 直線與圓錐曲線綜合問題》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)大二輪刷題首選卷理數(shù)文檔:第一部分 考點(diǎn)十六 直線與圓錐曲線綜合問題(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 考點(diǎn)十六 直線與圓錐曲線綜合問題 一、選擇題 1.(2019·安徽蕪湖模擬)已知雙曲線-=1(a>0,b>0)的離心率為,右焦點(diǎn)到一條漸近線的距離為,則此雙曲線的焦距等于( ) A. B.2 C.3 D.6 答案 B 解析 由題意得焦點(diǎn)F(c,0)到漸近線bx+ay=0的距離為d===b,即b=,又=,c2=a2+b2,可解得c=,∴該雙曲線的焦距為2c=2,故選B. 2.拋物線有如下光學(xué)性質(zhì):由焦點(diǎn)射出的光線經(jīng)拋物線反射后平行于拋物線的對稱軸;反之,平行于拋物線對稱軸的入射光線經(jīng)拋物線反射后必經(jīng)過拋物線的焦點(diǎn).若拋物線y2=4x的焦點(diǎn)為F,一平行于x軸的光線從
2、點(diǎn)M(3,1)射出,經(jīng)過拋物線上的點(diǎn)A反射后,再經(jīng)拋物線上的另一點(diǎn)B射出,則直線AB的斜率為( ) A. B.- C.± D.- 答案 B 解析 由題意可設(shè)點(diǎn)A的坐標(biāo)為(x0,1),代入y2=4x得12=4x0,x0=,又焦點(diǎn)F的坐標(biāo)為(1,0),所以kAB=kAF==-,故選B. 3.(2019·河南安陽二模)已知雙曲線-=1(a>0,b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,直線x=a與雙曲線的一條漸近線的交點(diǎn)為B.若∠BFA=30°,則雙曲線的離心率為( ) A. B. C.2 D.3 答案 C 解析 由題意可得A(a,0),雙曲線的漸近線方程為ay±bx=0,不妨設(shè)B點(diǎn)為
3、直線x=a與y=x的交點(diǎn),則B點(diǎn)的坐標(biāo)為(a,b),因?yàn)锳B⊥FA,∠BFA=30°,所以tan∠BFA====,解得e=2,故選C. 4.(2019·四川五校高三聯(lián)考)已知橢圓C:+=1(a>b>0)的右焦點(diǎn)為F,短軸的一個端點(diǎn)為P,直線l:4x-3y=0與橢圓C相交于A,B兩點(diǎn).若|AF|+|BF|=6,點(diǎn)P到直線l的距離不小于,則橢圓C的離心率的取值范圍是( ) A. B. C. D. 答案 C 解析 如圖所示,設(shè)F′為橢圓的左焦點(diǎn),連接AF′,BF′,則四邊形AF′BF是平行四邊形,可得6=|AF|+|BF|=|AF|+|AF′|=2a,得a=3,取P(0,b),由點(diǎn)P
4、到直線l的距離不小于,可得≥,解得|b|≥2. 所以e==≤ =,故選C. 5.已知圓O:x2+y2=4,從圓上任意一點(diǎn)P向y軸作垂線段PP1(P1在y軸上),點(diǎn)M在直線PP1上,且向量=2,則動點(diǎn)M的軌跡方程是( ) A.4x2+16y2=1 B.16x2+4y2=1 C.+=1 D.+=1 答案 D 解析 由題可知P是MP1的中點(diǎn),設(shè)點(diǎn)M(x,y),P(x0,y0),P1(0,y0),則又x+y=4,故2+y2=4,即+=1.故選D. 6.(2019·安徽皖南八校第三次聯(lián)考)已知F是橢圓C:+=1的右焦點(diǎn),P為橢圓C上一點(diǎn),A(1,2),則|PA|+|PF|的最大值為(
5、) A.4+ B.4 C.4+ D.4 答案 D 解析 如圖,設(shè)橢圓的左焦點(diǎn)為F′,則 |PF|+|PF′|=2,又F′(-1,0), |AF′|= =2, ∴|PA|+|PF|=2+|PA|-|PF′|,根據(jù)圖形可以看出||PA|-|PF′||≤|AF′|,∴當(dāng)P在線段AF′的延長線上時,|PA|-|PF′|最大,為|AF′|=2, ∴|PA|+|PF|的最大值為2+2=4,故選D. 7.已知拋物線y2=4x上有10個不同的點(diǎn),坐標(biāo)分別為P1(x1,y1),P2(x2,y2),…,P10(x10,y10),且橫坐標(biāo)x1,x2,x3,…,x10成等差數(shù)列,x2,x9為方程
6、x2-5x+6=0的兩個根,拋物線的焦點(diǎn)為F,則|FP1|+|FP2|+…+|FP10|的值為( ) A.20 B.30 C.25 D.35 答案 D 解析 由x2,x9為方程x2-5x+6=0的兩個根,可知x2+x9=5,x1+x2+…+x10===25,|FP1|+|FP2|+…+|FP10|=x1+x2+…+x10+10=35. 8.已知拋物線y2=x,點(diǎn)A,B在該拋物線上且位于x軸的兩側(cè),且直線AB與x軸交于點(diǎn)(a,0),若∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),則實(shí)數(shù)a的取值范圍是( ) A.[1,+∞) B.(1,+∞) C.(-∞,1) D.(-∞,1] 答案 B
7、 解析 設(shè)A(x1,y1),B(x2,y2)(y1>0>y2),直線AB的斜率不為0,設(shè)直線AB的方程為x=my+a,由得y2-my-a=0,則y1+y2=m,y1y2=-a,又因?yàn)椤螦OB為銳角,所以·=x1x2+y1y2=(y1y2)2+y1y2>0,因?yàn)閥1y2<0,所以y1y2<-1,即a>1. 二、填空題 9.已知直角坐標(biāo)系中A(-2,0),B(2,0),動點(diǎn)P滿足|PA|=|PB|,則點(diǎn)P的軌跡方程為________,軌跡為________. 答案 x2+y2-12x+4=0 一個圓 解析 設(shè)動點(diǎn)P的坐標(biāo)為(x,y),因?yàn)閨PA|=|PB|, 所以=, 整理得x2+y
8、2-12x+4=0,軌跡為一個圓. 10.已知P為橢圓+=1(a>b>0)上一點(diǎn),F(xiàn)1,F(xiàn)2是其左、右焦點(diǎn),∠F1PF2取最大值時cos∠F1PF2=,則橢圓的離心率為________. 答案 解析 易知∠F1PF2取最大值時,點(diǎn)P為橢圓+=1與y軸的交點(diǎn),由余弦定理及橢圓的定義得2a2-=4c2,即a=c,所以橢圓的離心率e==. 11.已知拋物線Γ:y2=8x的焦點(diǎn)為F,準(zhǔn)線與x軸的交點(diǎn)為K,點(diǎn)P在Γ上且|PK|=|PF|,則△PKF的面積為________. 答案 8 解析 由已知得,F(xiàn)(2,0),K(-2,0),過P作PM垂直于準(zhǔn)線,M為垂足,則|PM|=|PF|,又|P
9、K|=|PF|,所以|PM|=|MK|=|PF|,所以PF⊥x軸,△PFK的高等于|PF|,不妨設(shè)P(m2,2m)(m>0),則m2+2=4,解得m=,故△PFK的面積S=4×2××=8. 12.(2019·山東濰坊三模)已知雙曲線C:-=1(a>0,b>0)的右焦點(diǎn)為F,左頂點(diǎn)為A,以F為圓心,|FA|為半徑的圓交C的右支于M,N兩點(diǎn),且線段AM的垂直平分線經(jīng)過點(diǎn)N,則C的離心率為________. 答案 解析 由題意得A(-a,0),F(xiàn)(c,0),另一個焦點(diǎn)F′(-c,0),由對稱性知,|AM|=|AN|,又因?yàn)榫€段AM的垂直平分線經(jīng)過點(diǎn)N,則|AN|=|MN|,可得△AMN是
10、正三角形,如圖所示,連接MF,則|AF|=|MF|=a+c,由圖象的對稱性可知,∠MAF=∠NAF=∠MAN=30°,又因?yàn)椤鰽MF是等腰三角形,則∠AFM=120°,在△MFF′中,|FF′|2+|FM|2-2|FF′||FM|cos120°=|F′M|2=(|FM|+2a)2,即4c2+(a+c)2-2×2c(a+c)×=(3a+c)2,整理得3c2-ac-4a2=0,即(c+a)·(3c-4a)=0,則3c-4a=0,故e==. 三、解答題 13.(2019·全國卷Ⅲ)已知曲線C:y=,D為直線y=-上的動點(diǎn),過D作C的兩條切線,切點(diǎn)分別為A,B. (1)證明:直線AB過定點(diǎn);
11、(2)若以E為圓心的圓與直線AB相切,且切點(diǎn)為線段AB的中點(diǎn),求四邊形ADBE的面積. 解 (1)證明:設(shè)D,A(x1,y1),則x=2y1. 因?yàn)閥′=x,所以切線DA的斜率為x1, 故=x1. 整理得2tx1-2y1+1=0. 設(shè)B(x2,y2),同理可得2tx2-2y2+1=0. 故直線AB的方程為2tx-2y+1=0. 所以直線AB過定點(diǎn). (2)由(1)得直線AB的方程為y=tx+. 由 可得x2-2tx-1=0. 于是x1+x2=2t,x1x2=-1, y1+y2=t(x1+x2)+1=2t2+1, |AB|=|x1-x2| =×=2(t2+1). 設(shè)
12、d1,d2分別為點(diǎn)D,E到直線AB的距離, 則d1=,d2=. 因此,四邊形ADBE的面積 S=|AB|(d1+d2)=(t2+3) . 設(shè)M為線段AB的中點(diǎn),則M. 因?yàn)椤?,而?t,t2-2), 與向量(1,t)平行, 所以t+(t2-2)t=0,解得t=0或t=±1. 當(dāng)t=0時,S=3;當(dāng)t=±1時,S=4. 因此,四邊形ADBE的面積為3或4. 14.(2019·湖北武漢5月模擬)如圖,O為坐標(biāo)原點(diǎn),橢圓C:+=1(a>b>0)的焦距等于其長半軸長,M,N為橢圓C的上、下頂點(diǎn),且|MN|=2. (1)求橢圓C的方程; (2)過點(diǎn)P(0,1)作直線l交橢圓C
13、于異于M,N的A,B兩點(diǎn),直線AM,BN交于點(diǎn)T.求證:點(diǎn)T的縱坐標(biāo)為定值3. 解 (1)由題意可知2c=a,2b=2, 又a2=b2+c2,則b=,c=1,a=2, 故橢圓C的方程為+=1. (2)證明:由題意知直線l的斜率存在, 設(shè)其方程為y=kx+1, 設(shè)A(x1,y1),B(x2,y2)(x1x2≠0), 由得(4k2+3)x2+8kx-8=0, 所以x1+x2=, x1x2=,且x1+x2=kx1x2, 又lBN:y=·x-,lAM:y=·x+, 由得=·, 故=· =, 整理得=, 故y=× =× =×=3. 故點(diǎn)T的縱坐標(biāo)為3. 一、選擇
14、題 1.已知F1,F(xiàn)2是雙曲線-=1(a>0,b>0)的左、右兩個焦點(diǎn),過點(diǎn)F1作垂直于x軸的直線與雙曲線的兩條漸近線分別交于A,B兩點(diǎn),△ABF2是銳角三角形,則該雙曲線的離心率e的取值范圍是( ) A.(1,2) B.(1,) C.(1,5) D.(,+∞) 答案 B 解析 利用雙曲線的幾何性質(zhì)求解.由等腰△ABF2是銳角三角形可得∠AF2F1<45°,即|AF1|<|F1F2|,所以|AF1|=<|F1F2|=2c,所以b2=c2-a2<4a2,離心率e=<,又雙曲線的離心率e>1,所以離心率e的取值范圍是(1,),故選B. 2.已知橢圓C:+=1,若直線l經(jīng)過M(0,1)
15、,與橢圓交于A,B兩點(diǎn),且=-,則直線l的方程為( ) A.y=±x+1 B.y=±x+1 C.y=±x+1 D.y=±x+1 答案 B 解析 依題意,設(shè)直線l:y=kx+1,點(diǎn)A(x1,y1),B(x2,y2).則由消去y,整理得(9k2+5)x2+18kx-36=0,Δ=(18k)2+4×36×(9k2+5)>0,由此解得k=±,即直線l的方程為y=±x+1,選B. 3.已知雙曲線E:-=1,直線l交雙曲線于A,B兩點(diǎn),若線段AB的中點(diǎn)坐標(biāo)為,則l的方程為( ) A.4x+y-1=0 B.2x+y=0 C.2x+8y+7=0 D.x+4y+3=0 答案 C 解析 依題
16、意,設(shè)點(diǎn)A(x1,y1),B(x2,y2),則有兩式相減得=,即=×.又線段AB的中點(diǎn)坐標(biāo)是,因此x1+x2=2×=1,y1+y2=(-1)×2=-2,=-,=-,即直線AB的斜率為-,直線l的方程為y+1=-,即2x+8y+7=0,選C. 4.雙曲線-=1(a>0,b>0)的兩條漸近線將平面劃分為“上、下、左、右”四個區(qū)域(不含邊界),若點(diǎn)(2,1)在“右”區(qū)域內(nèi),則雙曲線的離心率e的取值范圍是( ) A. B. C. D. 答案 B 解析 依題意,雙曲線-=1的漸近線方程為y=±x,且“右”區(qū)域由不等式組所確定,又點(diǎn)(2,1)在“右”區(qū)域內(nèi),于是有1<,即>,因此題中的雙曲線的
17、離心率e=∈,選B. 5.設(shè)F1,F(xiàn)2是雙曲線C:-=1(a>0,b>0)的左、右焦點(diǎn),P是雙曲線C右支上一點(diǎn),若|PF1|+|PF2|=6a,且∠PF1F2=30°,則雙曲線C的漸近線方程是( ) A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0 答案 A 解析 因?yàn)镻為右支上一點(diǎn),由雙曲線的定義,可得|PF1|-|PF2|=2a,又|PF1|+|PF2|=6a,解得,|PF1|=4a,|PF2|=2a,且|F1F2|=2c,又∠PF1F2=30°,由余弦定理,可得cos30°===.則有c2+3a2=2ac,即c=a,則b==a,則雙曲線的漸近線方程為y=±x
18、=±x,故選A. 6.P是雙曲線C:-y2=1右支上一點(diǎn),直線l是雙曲線C的一條漸近線,P在l上的射影為Q,F(xiàn)1是雙曲線C的左焦點(diǎn),則|PF1|+|PQ|的最小值為( ) A.1 B.2+ C.4+ D.2+1 答案 D 解析 設(shè)F2是雙曲線C的右焦點(diǎn),因?yàn)閨PF1|-|PF2|=2,所以|PF1|+|PQ|=2+|PF2|+|PQ|,顯然當(dāng)F2,P,Q三點(diǎn)共線且P在F2,Q之間時,|PF2|+|PQ|最小,且最小值為F2到直線l的距離.易知l的方程為y=或y=-,F(xiàn)2(,0),可求得F2到l的距離為1,故|PF1|+|PQ|的最小值為2+1.選D. 7.(2019·五省名校聯(lián)考
19、)在直角坐標(biāo)系xOy中,F(xiàn)是橢圓C:+=1(a>b>0)的左焦點(diǎn),A,B分別為左、右頂點(diǎn),過點(diǎn)F作x軸的垂線交橢圓C于P,Q兩點(diǎn),連接PB交y軸于點(diǎn)E,連接AE交PQ于點(diǎn)M,若M是線段PF的中點(diǎn),則橢圓C的離心率為( ) A. B. C. D. 答案 C 解析 如圖,連接BQ,則由橢圓的對稱性易得∠PBF=∠QBF,∠EAB=∠EBA,所以∠EAB=∠QBF,所以ME∥BQ,因?yàn)椤鱌ME∽△PQB,所以=,因?yàn)椤鱌BF∽△EBO,所以=,從而有=,又因?yàn)镸是線段PF的中點(diǎn),所以e====,故選C. 8.已知拋物線x2=8y,過點(diǎn)P(b,4)作該拋物線的切線PA,PB,切點(diǎn)為A,
20、B,若直線AB恒過定點(diǎn),則該定點(diǎn)為( ) A.(4,0) B.(3,2) C.(0,-4) D.(4,1) 答案 C 解析 設(shè)A,B的坐標(biāo)為(x1,y1),(x2,y2),y=,y′=,PA,PB的方程分別為y-y1=(x-x1),y-y2=(x-x2),由y1=,y2=得y=x-y1,y=x-y2,因?yàn)榍芯€PA,PB都過點(diǎn)P(b,4), 所以4=b-y1,4=b-y2,故可知過A,B兩點(diǎn)的直線方程為4=x-y,當(dāng)x=0時,y=-4,所以直線AB恒過點(diǎn)(0,-4). 二、填空題 9.(2019·河北唐山一模)已知拋物線C:y2=8x的焦點(diǎn)為F,經(jīng)過點(diǎn)M(-2,0)的直線交C于A
21、,B兩點(diǎn),若OA∥BF(O為坐標(biāo)原點(diǎn)),則|AB|=________. 答案 解析 如圖,拋物線C:y2=8x的焦點(diǎn)為F,經(jīng)過點(diǎn)M(-2,0)的直線交C于A,B兩點(diǎn),由OA∥BF,得A是BM的中點(diǎn),不妨設(shè)B(m,2), 可得A,可得2m=4(m-2),解得m=4,所以B(4,4),A(1,2),所以|AB|==. 10.(2019·安徽合肥第二次教學(xué)質(zhì)量檢測)已知橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,P為橢圓C上一點(diǎn),且∠F1PF2=,若F1關(guān)于∠F1PF2平分線的對稱點(diǎn)在橢圓C上,則該橢圓的離心率為________. 答案 解析 ∵F1關(guān)于∠F1P
22、F2平分線的對稱點(diǎn)Q在橢圓C上,則|PF1|=|PQ|,∵∠F1PQ=60°, ∴△F1PQ為正三角形, ∴|F1Q|=|F1P|, 又∵|F1Q|+|F2Q|=|F1P|+|F2P|=2a, ∴|F2Q|=|F2P|, ∴PQ⊥x軸,設(shè)|PF2|=t, 則|PF1|=2t,|F1F2|=t,即 即e===. 11.已知雙曲線C:-=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)M與雙曲線C的焦點(diǎn)不重合,點(diǎn)M關(guān)于F1,F(xiàn)2的對稱點(diǎn)分別為A,B,線段MN的中點(diǎn)在雙曲線的右支上,若|AN|-|BN|=12,則a=________. 答案 3 解析 如圖,設(shè)MN的中點(diǎn)為P.
23、 ∵F1為MA的中點(diǎn),F(xiàn)2為MB的中點(diǎn), ∴|AN|=2|PF1|,|BN|=2|PF2|, 又|AN|-|BN|=12, ∴|PF1|-|PF2|=6=2a,∴a=3. 12.已知M(-5,0),N(5,0)是平面上的兩點(diǎn),若曲線C上至少存在一點(diǎn)P,使|PM|=|PN|+6,則稱曲線C為“黃金曲線”.下列五條曲線: ①-=1;②y2=4x;③-=1;④+=1;⑤x2+y2-2x-3=0. 其中為“黃金曲線”的是________(寫出所有“黃金曲線”的序號). 答案?、冖? 解析 由已知得,點(diǎn)P的軌跡是以M,N為焦點(diǎn),實(shí)軸長2a=6的雙曲線的右支, 可得b2=c2-a2=
24、52-32=16.則雙曲線的方程為-=1(x>0). 對于①,兩方程聯(lián)立,無解,則①錯誤; 對于②,解得x=成立,②成立; 對于③,兩方程聯(lián)立,無解,則③錯誤; 對于④,兩方程聯(lián)立,無解,則④錯誤; 對于⑤,消去y整理得 25x2-18x-171=0,必有一個正根,⑤成立. 故所有“黃金曲線”的序號為②⑤ 三、解答題 13.(2019·全國卷Ⅱ)已知F1,F(xiàn)2是橢圓C:+=1(a>b>0)的兩個焦點(diǎn),P為C上的點(diǎn),O為坐標(biāo)原點(diǎn). (1)若△POF2為等邊三角形,求C的離心率; (2)如果存在點(diǎn)P,使得PF1⊥PF2,且△F1PF2的面積等于16,求b的值和a的取值范圍.
25、 解 (1)連接PF1.由△POF2為等邊三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故C的離心率為e==-1. (2)由題意可知,滿足條件的點(diǎn)P(x,y)存在當(dāng)且僅當(dāng) |y|·2c=16,·=-1,+=1, 即c|y|=16,① x2+y2=c2,② +=1.③ 由②③及a2=b2+c2得y2=. 又由①知y2=,故b=4. 由②③及a2=b2+c2得x2=(c2-b2), 所以c2≥b2,從而a2=b2+c2≥2b2=32, 故a≥4. 當(dāng)b=4,a≥4時,存在滿足條件的點(diǎn)P. 所以
26、b=4,a的取值范圍為[4,+∞). 14.(2019·湖北四地七校期末)已知點(diǎn)F(0,1),點(diǎn)A(x,y)(y≥0)為曲線C上的動點(diǎn),過A作x軸的垂線,垂足為B,滿足|AF|=|AB|+1. (1)求曲線C的方程; (2)直線l與曲線C交于兩不同點(diǎn)P,Q(非原點(diǎn)),過P,Q兩點(diǎn)分別作曲線C的切線,兩切線的交點(diǎn)為M.設(shè)線段PQ的中點(diǎn)為N,若|FM|=|FN|,求直線l的斜率. 解 (1)由|AF|=|AB|+1得=|y|+1, 化簡得曲線C的方程為x2=4y. (2)由題意可知直線l的斜率存在,設(shè)直線l的方程為y=kx+b, 聯(lián)立x2=4y得x2-4kx-4b=0, 設(shè)P(x1,y1),Q(x2,y2), 則x1+x2=4k,x1x2=-4b, 設(shè)N(xN,yN),則xN==2k,yN=2k2+b, 又曲線C的方程為x2=4y,即y=,y′=, 所以過P點(diǎn)的切線斜率為, 切線方程為y-y1=(x-x1),即y=x-x, 同理,過Q點(diǎn)的切線方程為y=x-x, 聯(lián)立兩切線方程可得 xM==2k,yM=x1x2=-b,所以xM=xN, 又因?yàn)閨FM|=|FN|,所以MN中點(diǎn)縱坐標(biāo)為1, 即2k2+b-b=2,即k2=1,所以k=±1, 故直線l的斜率為k=±1.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 起搏器護(hù)理查房優(yōu)選ppt資料
- 基于用戶行為相似好友推薦系統(tǒng)課件
- 人教a版高考數(shù)學(xué)(理)一輪課件44函數(shù)yasin(ωxφ)的圖象及三角函數(shù)模型的簡單應(yīng)用
- 如何合理使用高血壓藥物專題宣講
- 廢棄紙張的危害課件
- 第8課 鳥語花香(1)
- 廣告投放模板
- 七年級英語下冊 Unit 6 I’m watching TV Self check 課件 (新版)人教新目標(biāo)版
- 小學(xué)數(shù)學(xué)教學(xué)課件第7課時-約分
- 真北方說課模版課件
- 小學(xué)五年級語文下冊第四單元青山處處埋忠骨作業(yè)課件新人教版3
- 看清“三股勢力”的真實(shí)面目主題團(tuán)會課件
- 人琴俱亡(教育精品)
- 新員工入安全培訓(xùn)課件
- 九年級政治全冊 第10課 第2站 培育民族精神課件2 北師大版