《精修版貴州省貴陽市九年級數(shù)學(xué)競賽講座 20第二十講 直線與圓》由會員分享,可在線閱讀,更多相關(guān)《精修版貴州省貴陽市九年級數(shù)學(xué)競賽講座 20第二十講 直線與圓(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理
注: 點與圓的位置關(guān)系和直線與圓的位置關(guān)系的確定有共同的精確判定方法,即量化的方法(距離與半徑的比較),我們稱“由數(shù)定形”,勾股定理的逆定理也具有這一特點.
【例題求解】
【例1】 如圖,AB是半圓O的直徑,CB切⊙O于B,CD切⊙O于D,交BA的延長線于E,若EA=1,ED=2,則BC的長為 .
思路點撥 從C點看,可用切線長定理,從E點看,可用切割線定理,而連OD,則OD⊥EC,又有相似三角形,先求出⊙O的半徑.
注:連結(jié)圓心與切點是一條常用的輔助
2、線,利用切線的性質(zhì)可構(gòu)造出直角三角形,在圓的證明與計算中有廣泛的應(yīng)用.
【例2】 如圖,AB、AC與⊙O相切于B、C,∠A=50°,點P是圓上異于B、C的一個動點,則∠BPC的度數(shù)是( )
A.65° B.115° C.60°和115° D.130°和50°
(山西省中考題)
思路點撥 略
【例3】 如圖,以等腰△ABC的一腰AB為直徑的⊙O交BC于D,過D作DE⊥AC于E,可得結(jié)論:DE是⊙O的切線.
問:(1)若點O
3、在AB上向點B移動,以O(shè)為圓心,OB為半徑的圓的交BC于D,DE⊥AC的條件不變,那么上述結(jié)論是否還成立?請說明理由;
(2)如果AB=AC=5cm,sinA=,那么圓心O在AB的什么位置時,⊙O與AC相切? (2001年黑龍江省中考題)
【例4】 如圖,已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是AB邊上的動點(與點A、B不重合),Q是BC邊上的動點(與點B、C不重合).
(1)當(dāng)PQ∥AC,且Q為BC的中點時,求線段PC的長;
(2)當(dāng)PQ與AC不平行時,△CPQ可能為直角三角形嗎?若有可能,求出線段CQ的長的取值范
4、圍;若不可能,請說明理由. (廣州市中考題)
思路點撥 對于(2),易發(fā)現(xiàn)只有點P能作為直角頂點,建立一個研究的模型——以CQ為直徑的圓與線段AB的交點就是符合要求的點P,從直線與圓相切特殊位置入手,以此確定CQ的取值范圍.
注:判定一直線為圓的切線是平面幾何中一種常見問題,判定的基本方法有:
(1)從直線與圓交點個數(shù)入手;
(2)利用角證明,即證明半徑和直線垂直;
(3)運用線段證明,即證明圓心到直線的距離等于半徑.
一個圓的問題,從不同的條件出發(fā),可有不同的添輔助線方式,進而可得不同的證
5、法,對于分層次設(shè)問的問題,需整體考慮;
【例5】如圖,在正方形ABCD中,AB=1,是以點B為圓心,AB長為半徑的圓的一段弧,點E是邊AD上的任意一點(點E與點A、D不重合),過E作所在圓的切線,交邊DC于點F,G為切點.
(1)當(dāng)∠DEF=45°時,求證點G為線段EF的中點;
(2)設(shè)AE=x,F(xiàn)C=y,求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)將△DEF沿直線EF翻折后得△D1EF,如圖,當(dāng)EF=時,討論△AD1D與△ED1F是否相似,如果相似,請加以證明;如果不相似,只要求寫出結(jié)論,不要求寫出理由.
6、 (上海市中考題)
思路點撥 圖中有多條⊙B的切線,由切線長定理可得多對等長線段,這是解(1)、(2)問的基礎(chǔ),對于(3),由(2)求出的值,確定E點位置,這是解題的關(guān)鍵.
注:本例將幾何圖形置于直角坐標(biāo)系中,綜合了圓的有關(guān)性質(zhì)、相似三角形的判定與性質(zhì)、切線的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等豐富的知識,并結(jié)合了待定系數(shù)法、數(shù)形互
助等思想方法,具有較強的選拔功能.
學(xué)力訓(xùn)練
1.如圖,AB為⊙O的直徑,P點在AB延長線上,PM切⊙O于M點,若OA=, FM=,那么△PMB的周長為 .
7、 (河北省中考題)
2.PA、PB切⊙O于A、B,∠APB=78°,點C是⊙O上異于A、B的任意一點,則
∠ACB= .
3.如圖,EB、EC是⊙O的兩條切線,B、C是切點,A、D是⊙O上兩點,如果∠F=46°,∠DCF=32°,則∠A的度數(shù)是 . (重慶市中考題)
4.如圖,以△ABC的邊AB為直徑作⊙O交BC于D,過點D作⊙O的切線交AC于E,要使DE⊥AC,則△ABC的邊必須滿足的條件是 .
8、 (武漢市中考題)
5.、表示直線,給出下列四個論斷:①∥;②切⊙O于點A;③切⊙O于點B;④AB是⊙O的直徑.若以其中三個論斷作為條件,余下的一個作為結(jié)論,可以構(gòu)造出一些命題,在這些命題中,正確命題的個數(shù)為( )
1 B.2 C.3 D.4
(江蘇鎮(zhèn)江市中考題)
6.如圖,圓心O在邊長為的正方形ABCD的對角線BD上,⊙O過B點且與AD、DC邊均相切,則⊙O的半徑是( )
A.
9、B. C. D.
(廣西玉林市中考題)
7.直角梯形ABCD中,AD∥BC,∠B=90°,AD+BC
10、交于D點,DP⊥AC于P,DH⊥BH于H,下列結(jié)論:①CH=CP;②A D=DB;③AP=BH;④DH為圓的切線,其中一定成立的是( )
A.①②④ B.①③④ C.②③④ D.①②③
(武漢市中考題)
9.如圖,⊙O是△ABC的外接圓,已知∠ACB=45°,∠ABC=120°,⊙O的半徑為1,
(1)求弦AC、AB的長;
(2)若P為CB的延長線上一點,試確定P點的位置,使PA與⊙O相切,并證明你的結(jié)論.
10.如圖,AB是⊙O的直
11、徑,點P在BA的延長線上,弦CD⊥AB于E,且PC2=PE·PO.
(1)求證:PC是⊙O的切線;
(2)若OE:EA=1:2,且PA=6,求⊙O的半徑;
(3)求sin∠PCA的值. (長沙市中考題)
11.(1)如圖a,已知直線AB過圓心O,交⊙O于A、B,直線AF交⊙O于F(不與B重合),直線交⊙O于C、D,交AB于E且與AF垂直,垂足為G,連AC、 AD,求證:①∠BAD=∠CAG;②AC·AD=AE·AF.
(2)在問題(1)中,當(dāng)直線向上平行移動與⊙O相切時,其他條件不變.
①請你在
12、圖b中畫出變化后的圖形,并對照圖a標(biāo)記字母;
②問題(1)中的兩個結(jié)論是否成立?如果成立,請給出證明;如不成立,請說明理由.
(遼寧省中考題)
12.如圖,在Rt△ABC中,∠A=90°,⊙O分別與AB、AC相切于點E、F,圓心O在BC上,若AB=a,AC=b,則⊙O的半徑等于 .
13.如圖,AB是半圓O的直徑,點M是半徑OA的中點,點P在線段AM上運動(不與點M重合),點Q在半圓O上運動,且總保持PQ=PO,過點Q作⊙O的切線交BA的延長線于點C.
(1)當(dāng)∠QPA=60°時,請你對△QCP的形狀做出猜想,并給予證明.
(2)當(dāng)QP⊥AB時,△QCP的
13、形狀是 三角形.
(3)由(1)、(2)得出的結(jié)論,請進一步猜想當(dāng)點P在線段AM上運動到任何位置時,△QCP一定是 三角形. (吉林省中考題)
14.如圖,已知AB為⊙O的直徑,CB切⊙O于B ,CD切⊙O于D,交BA的延長線于E,若AB=3,ED=2,則BC的長為( )
A.2 B.3 C.3.5 D.4
⌒
⌒
15.如圖,PA、PB是⊙O的兩條切線,A、B切點,直線OP交⊙O于C、D
14、,交AB于E,AF為⊙O的直徑,下列結(jié)論:(1)∠APB=∠AOP;(2)BC=DF;(3)PC·PD=PE·PO,其中正確結(jié)論的個數(shù)有( )
A.3個 B.2個 C.1個 D.0個
16.如圖,已知△ABC,過點A作外接圓的切線交BC的延長線于點P,,點D在AC上,且,延長PD交AB于點E,則的值為( )
A. B. C. D.
(太原市競賽題)
⌒
15、
⌒
17.如圖,已知AB為半圓O的直徑,AP為過點A的半圓的切線. 在AB上任取一點C(點C與A、B不重合),過點C作半圓的切線CD交AP于點D;過點C作CE⊥AB,垂足為E.連結(jié)BD,交CE于點F.
(1)當(dāng)點C為AB的中點時(如圖1),求證:CF=EF;
(2)當(dāng)點C不是AB的中點時(如圖2),試判斷CF與EF的相等關(guān)系是否保持不變,并證明你的結(jié)論. (蘇州市中考題)
18.如圖
16、,△ABC中,∠C=90°,AC=6,BC=3,點D在AC邊上,以D為圓心的⊙D與AB切于點E.
(1)求證:△ADE∽△ABC;
(2)設(shè)⊙D與BC交于點F,當(dāng)CF=2時,求CD的長;
(3)設(shè)CD=,試給出一個值,使⊙D與BC沒有公共點,并說明你給出的值符合的要求.
(浙江省中考題)
19.如圖,PA、PB與⊙O切于A、B兩點,PC是任意一條割線,且交⊙O于點E、C,交AB于點D.求證:
(天津市選拔賽試題)
20.如圖,⊙Oˊ與x軸交于A、B兩點,與y軸交于C
17、、D兩點,圓心Oˊ的坐標(biāo)是(1,一1),半徑是,
(1)求A、B、C、D四點的坐標(biāo);
(2)求經(jīng)過點D的切線的解析式;
(3)問過點A的切線與過點D的切線是否垂直?若垂直,請寫出
證明過程;若不垂直,試說明理由.
21.當(dāng)你進入博物館的展覽廳時,你知道站在何處觀賞最理想? 如圖,設(shè)墻壁上的展品最高處點P距離地面a米,最低處點Q距離地面b米,觀賞者的眼睛點E距離地面m米,當(dāng)過 P、Q、E三點的圓與過點E的水平線相切于點E時,視角∠PEQ最大,站在此處觀賞最理想.
(1)設(shè)點E到墻壁的距離為x米,求a、b、m,x的關(guān)系式;
(2)當(dāng)a=2.5,b=2,m=1.6時,求:
(a)點E和墻壁距離x米;(b)最大視角∠PER的度數(shù)(精確到1度).
(常州市中考題)
參考答案
最新精品資料