《材料力學(xué)性能》中英文全套PPT課件
《材料力學(xué)性能》中英文全套PPT課件,材料力學(xué)性能,材料,力學(xué)性能,中英文,全套,PPT,課件
Stressed and Strained StatesLi ChenhuiStress Stress is the load applied to a body and related per unit area of the bodys section.應(yīng)力應(yīng)力是和物體單位表面單位表面上受到的載荷載荷。A relative quantity;相對(duì)量The dimension of stress is determined as the force active per unit area of the body section to which the force is applied.其大小由受力物體單位表面載荷大小決定。Usually measured as newtons per square metre(N/m2)or kgf/mm2;通常單位 注:kgf/mm2表示的是每平方毫米的面積上施加1kg力的壓力,這個(gè)壓強(qiáng)大約相當(dāng)于10Mpa。The units of stress express the principal mechanical properties(ultimate strength強(qiáng)度極限,resistance to plastic flow塑性變形抗力,resistance to indentation壓痕阻力,fatigue strength強(qiáng)度疲勞,creep strength蠕變強(qiáng)度,etc.)應(yīng)力的單位反映了它的力學(xué)性質(zhì)The case of axialtension of a cylindricalrod)圓柱體受軸向載荷的情況if S=constant (uniform distribution of the stress over the cross section)應(yīng)力在橫截面上均勻分布。P=SF or S=P/FIn a more general case The normal stress(正應(yīng)力)The shear stress(剪應(yīng)力)單軸拉伸的莫爾圓Thus,if we know the tensile force P applied to the rod and the cross-sectional area F.we can determine the normal and shear stresses in any plane making an arbitrary angle with the rod axis.The distribution of normal and shear stresses in variously oriented planes of a tensioned specimen are illustrated in Fig.4.Engineering/Actual(True)Stress工程應(yīng)力和真實(shí)應(yīng)力F:forceapplied作用力;A0:areabeforedeformation 變形前的面積The engineering stress is often employed for elastic stresses or stresses for componentsdeformed to small plastic strains.工程應(yīng)力通常應(yīng)用于彈性應(yīng)力或者適用于微小塑性應(yīng)變下的應(yīng)力At large strains,the change in cross-sectional area significantly alters the actual stresses.在大的應(yīng)變下,橫截面的改變會(huì)顯著改變真實(shí)應(yīng)力The true stress is:where A is the instantaneous 瞬時(shí)的area.Strain Strainis the ratio of the change in dimension to its initial value.應(yīng)變是材料尺寸的變化量和它初始尺寸的比值。Axial tension of a cylindrical rod as;圓柱體受到的軸向拉力Load applied;拉力加載Rod deformed,the length increased from l0 to ln;桿開(kāi)始變形,長(zhǎng)度由l0伸長(zhǎng)到lnengineering strain工程應(yīng)變=桿長(zhǎng)度改變量/桿的原始長(zhǎng)度The engineering strain should be used only if the deformation strains are small in magnitude(e.g.,eeng E for a tensile test,a result intuitively deduced previously.In contrast,if the material were compressed so that the cross-sectional area increased during deformation(with E 0),we would find T E相應(yīng),對(duì)于擠壓時(shí),截面積增加:T E Which shows that T E in a tension test(i.e.,ln(l+x)a0,and u is positive.In compression,a a0 and u a0,u 0;受壓時(shí)a a0,u 0。The equilibrium condition 等效計(jì)算式can be written,as follows:where (u)is the bond(結(jié)合)energy on displacement(位移)u.其中(u)是距離為u時(shí)原子間的作用能。By analysing the system of two atoms,it is also possible to derive Hookes law which establishes the relationship between the external force applied and the resulting displacement.研究?jī)蓚€(gè)原子間的作用機(jī)制,可以從本質(zhì)上來(lái)探尋Hookes law,來(lái)研究外作用力和它所造成的位移的關(guān)系。For Hookes law to be valid(有效),the following three conditions must be satisfied:胡克定律的應(yīng)用有三個(gè)條件:(1)the function(函數(shù))(u)must be continuous;作用能(u)必須是連續(xù)的(2)the function(u)must have a minimum d/du=0 at u=0;and 當(dāng)u=0時(shí),d/du=0,(u)必須具有最小值(3)the displacement u must be much less than a0.變形量u必須遠(yuǎn)小于原子間的初始距離a0。The first condition makes it possible to expand the interaction energy function into a Taylor series:第一個(gè)條件允許把方程展開(kāi)成Taylor式In this equation,0 is the interaction energy at u=0 and,all the derivatives are obtained for the point u=0.在等式中,0是位移量u=0處的原子間初始能量,該等式是在u=0處展開(kāi)的。Since d/du is equal to zero at u=0,and,the terms with the third and higher powers of u can be neglected(as u is small),we obtain:因?yàn)樵趗=0處d/du,并且由于u很小,所以三次微分和更高次可以被忽略,得到:The second derivative(d2/du2)o is the curvature(曲率)of the function(u)in point u=0,and,therefore,it does not depend on u and is a constant.二次微分項(xiàng)是函數(shù)(u)在u=0處的變化率,因此它不依賴(lài)于U,它是一個(gè)常數(shù)。Thus,weobtainf=constu,i.e.the force is proportional to displacement(Hookes law).力與形變量成比例。這就解釋了為什么應(yīng)力和應(yīng)變對(duì)應(yīng)成比例關(guān)系。It should be recalled that the region of a direct proportionality between the force and displacement is limited to slight deformations.應(yīng)當(dāng)提醒的是:應(yīng)力應(yīng)變線性關(guān)系只適用于微量變形中。With an appreciable magnitude of displacement u,the terms of higher powers of u cannot be neglected and,therefore,the(u)curve deviates from the straight line.當(dāng)位移量u很大時(shí),u的高階冪不能忽略,那(u)就不是直線了。This phenomenon is never encountered in practice,since an irreversible plastic deformation begins in metal even at lower stresses.The law of direct proportionality is then disturbed but for different reasons.在實(shí)際中,這個(gè)理想情況不可能遇到,因?yàn)樗苄宰冃卧跇O小應(yīng)力下就發(fā)生了。因?yàn)檫@個(gè)原因(這里面有位錯(cuò)的原因),胡克定律就不適用了。Perfect thread-shaped metal crystals of a diameter of around 2 um(called whiskers(晶須)),in which plastic flow is impeded(阻礙),can,however,be deformed elastically by a few per cent and,at high elastic deformations,a deviation from Hookes law can be observed experimentally 直徑為2 um的針狀金屬,加載載荷,當(dāng)變形為百分之幾的時(shí)候盡管里面已經(jīng)發(fā)生了塑性變形但仍符合為彈性變形規(guī)律。如果再超過(guò)一定的變形量,就不符合胡克定律。在實(shí)驗(yàn)中可能觀測(cè)到右圖:InshearstressTheshearstressisrelatedwithacorrespondingsheardeformationbysimilarexpression:切應(yīng)力對(duì)應(yīng)一個(gè)切變 量,有相同的表達(dá)式:whereGistheshearmodulus(orthemodulusofelasticityinshear)G 是切變模量。(1-3)Inhydrostaticcompression(ortension)在流體拉(壓)中Hookeslawexpressesadrec直直接接proportionalitybetween the hydrostaticpressurePandthevolumechangex:胡克定律揭示了流體壓力P和體積變化量x間的關(guān)系where K is the modulusof bulk(體體積積)deformation.K稱(chēng)為體彈模量(1-4)Hookes law(3)Formulae(1-2),(1-3)and(1-4)expresswhatiscalledHookslaw.(1-2),(1-3)和(1-4)公式是胡克定律。Determinestherelationshipbetweenstressandstrainactinginthesamedirection用來(lái)決定同方向上的應(yīng)力應(yīng)變間的關(guān)系。Whendeformationappearinadirectiondifferentfromthatofthestressaction,itdoesnotwork.不適用于不同方向上的應(yīng)力應(yīng)變。Elementaryform基本形式 nomenclature(1)Poissons ratioIsotropicAnisotropicModuliCoefficientPolymorphous transformationPhase transformation術(shù)語(yǔ)(1)泊松比各向同性的各向異性的modulus的復(fù)數(shù)系數(shù)多形態(tài)轉(zhuǎn)變相變nomenclature (2)RecrystallizationSubstantiallyPreferable orientationTextureRadiographicHeterophaseAnomaly,(anomalies,anomalous)PeculiarMagnetic effectElinvar術(shù)語(yǔ)(2)重結(jié)晶充分地?fù)駜?yōu)取向織構(gòu)輻射照相的異質(zhì)相(名)不規(guī)則,異常的人或物罕見(jiàn)的、特殊的;特權(quán)磁效應(yīng)恒彈性鎳鉻鋼P(yáng)oissons ratioA rod subjected to uniaxial tension not only increases in length(a change in the size along the axis X)but also diminishes in diameter(compression along the two other axes).Thus,a uniaxial stressed state results in a tridimensional deformation.一個(gè)桿受到軸向拉伸后,長(zhǎng)度增加,同時(shí)直徑減小,因此一個(gè)軸向載荷造成的是一個(gè)三維的變形。The ratio of the sizes change in the lateral(橫向的)direction to their change in the longitudinal direction is called Poissons ratio:截面方向尺寸的變化和長(zhǎng)度方向尺寸的變化比為泊松比v is Poissons ratio and is a material elastic property;the negative sign in Eq.indicates that the sample dimensions normal to the primary extension decrease(increase)as the axial length of the sample increases(decreases).v是泊松比,是一材料的彈性性能參數(shù)。上式中的負(fù)號(hào)(正號(hào))表明當(dāng)桿受拉(壓)時(shí),其截面積減小(增加)。For metals,the value of v is often on the order of 1/3.對(duì)金屬來(lái)說(shuō),v大約在1/3左右。The change in volume associated with the small strains of linear elastic deformation can be obtained by differentiating the expression for the volume(V=l1l2l3)and keeping terms only to first order.The result is 應(yīng)變?cè)斐傻捏w積方面的變化,可以由體積計(jì)算公式V=l1l2l3得到,如下:For uniaxial deformation,V/V=(l-2).Given that =1/3,an elastic uniaxial strain of 0.5%would produce a volume change of ca.0.2%.Since linear elastic strains are typically smaller than this,the volume change during this type of deformation is usually quite small.對(duì)于軸向變形而言V/V=(l-2),當(dāng)=1/3時(shí),一個(gè)0.5%的軸向變形在體積方面造成的變形為0.2%。因彈性變形體軸向變形明顯小于0.5%,因此其體積的變形往往很小。The elastic volume change decreases as increases.For an incompressible material,such as a plastically deforming metal for which the volume change is zero,the ratio of lateral to uniaxial strain is 1/2.Such a value does not imply that,an elastic property,has a value of 0.5 for a metal during plastic deformation.當(dāng)v增加,體積變形減小。對(duì)于一個(gè)不可壓縮的材料,例如體積變化量為0的塑性變形的金屬,截面應(yīng)變對(duì)軸向應(yīng)變的比為-0.5,但它并不表示塑性變形中泊松比為0.5long-chain polymers typically have values of v greater than metals.Hence,and as noted in the previous section,these materials differ substantially from other linear elastic materials.長(zhǎng)鏈聚合物泊松比明顯大于金屬因此,這些材料的材質(zhì)和線性彈性材料有明顯的區(qū)別。Four elastic constants of an isotropic body基本上與價(jià)位、熔點(diǎn)呈線性關(guān)系Refractory metal 難熔金屬Strong carbide forming metal 強(qiáng)碳化物形成金屬Effect of various factors on elastic moduli對(duì)彈性模量的幾種影響因素Temperature溫度Work hardening加工硬化Alloying合金化Anomalous異?,F(xiàn)象Temperature effectSince elastic moduli are associated with interatomic forces and the latter depend on the distances between atoms in the crystal lattice,elastic constants depend on temperature.由于彈性模量和原子間的作用力有關(guān),而原子間的作用力依靠晶體點(diǎn)陣中原子間的作用距離,所以彈性模量和溫度有關(guān)。The temperature dependence of elastic moduli is very weak;As may be seen,the magnitude of modulus decreases with increasing temperature,with the E(T)relationship being almost linear.On the average,the elastic modulus decreases by 2-4 per cent by every 100C.彈性模量對(duì)溫度的依賴(lài)是非常微弱的,由上圖可以看出,彈性常數(shù)隨溫度的增加而減小,E(T)曲線幾乎成線性關(guān)系。平均來(lái)說(shuō),溫度每增加100度,彈性常數(shù)減小24個(gè)百分點(diǎn)。The temperature coefficient of the elastic modulus of a metal depends on the melting point of that metal.For that reason it is sometimes convenient to consider the dependence of the modulus on homologous()temperature.In this presentation,the temperature relationship of the modulus is nearly linear.一塊金屬的彈性模量的溫度因數(shù)取決于該金屬的熔點(diǎn)。因此可明確相同溫度下彈性模量的變化規(guī)律。表述之,溫度和彈性模量呈近似線性關(guān)系。Empirical(經(jīng)驗(yàn)主義的)correlation indicates that the appropriate scaling constant is about 100(when SI units are used;i.e.,kTm in J and in m3).Thus,經(jīng)驗(yàn)公式表明近似比例常數(shù)是大約100.K=Boltzmann constant,波爾茲曼常數(shù)Tm=absolute melting temperature,熔點(diǎn)溫度=volume per atom 單個(gè)原子的體積The modulus decreases concurrent(一致的)with the increased atomic separation.This decrease is essentially linear with temperature,and an approximate equation describing the modulus-temperature relationship is當(dāng)原子間距離增加時(shí),彈性系數(shù)減小,這個(gè)減小和溫度成線性關(guān)系。相應(yīng)彈性系數(shù)和溫度間的關(guān)系式為:where E is the modulus at temperature T and E0 the modulus at 0 K.The proportionality constant a for most crystalline(透明的,水晶般的)solids is on the order of 0.5.Thus,for such a typical material,the modulus decreases by about 50%as the temperature increases from 0 K to the materials melting point.上式中E是溫度T時(shí)的彈性模量,E0是溫度為0K時(shí)的彈性模量,比例常數(shù)a對(duì)多數(shù)晶體而言大約是0.5,因此對(duì)于一個(gè)典型材料,當(dāng)溫度由0K增加到材料的熔點(diǎn)時(shí)彈性模量減小50%Alloying(1)Alloying(2)in AlThe effect of alloying on elastic constants,like the effect of temperature,can be associated with variations in the interatomic distances and interatomic forces in the crystal lattice.合金對(duì)彈性系數(shù)的影響,就像溫度的影響一樣,和晶體點(diǎn)陣內(nèi)的內(nèi)部原子間隔距離和作用力有關(guān)。As has been demonstrated in radiographic studies,the lattice parameter(參數(shù))of a solvent(溶劑)varies almost linearly with the concentration of an alloying element.The dependence of the elastic modulus of an alloy on the concentration of an alloying element is also close to linear.在多項(xiàng)晶體的研究中已經(jīng)證實(shí):溶劑點(diǎn)陣常數(shù)因合金成分濃度的不同而近乎成線性變化。合金彈性系數(shù)和合金成分的濃度也接近線性關(guān)系。As may be seen from the figure,alloying can increase the elastic modulus in some cases and decrease it in others,depending on the relationship between the bond forces of atoms of the solute(溶質(zhì))and solvent(溶劑).從上面的數(shù)據(jù)可以看出,合金有時(shí)增加彈性模量,有時(shí)減小彈性模量,是取決于溶劑、溶質(zhì)原子間的相互作用力。on the one hand,and the forces of atomic interaction in the solvent lattice.1.如果溶質(zhì)溶劑原子間的作用力小于溶劑點(diǎn)陣中溶劑原子間的相互作用力,那么合金將減小彈性模量。on the other,If the former are greater than the latter,alloying will increase the elastic moduli.2.如果溶質(zhì)溶劑原子間的作用力大于溶劑點(diǎn)陣中溶劑原子間的相互作用力,那么合金將增加彈性模量。Apart from the variations of the interatomic forces in the lattice of the base component,alloying can also cause certain structural changes which can influence appreciably the magnitude of the elastic constants.除了改變基底點(diǎn)陣中原子間的作用力外,合金也可以引起其結(jié)構(gòu)的改變,這將顯著改變彈性模量常數(shù)的大小。For instance,if alloying above a definite limit results in the formation of a second phase,the elastic modulus may change additionally compared with its value in a single-phase solid solution.例如如果合金超過(guò)一個(gè)有限的度就可以形成第二相,那么其彈性系數(shù)和單相時(shí)相比會(huì)發(fā)生顯著變化。If the second phase has a higher modulus than that of the base metal,its presence will increase the modulus of the heterophase(異相質(zhì))alloy.如果第二相的彈性系數(shù)比基底金屬大,它的出現(xiàn)將增加此異相合金的彈性系數(shù)。Work hardeningWork hardening has no essential effect on elastic moduli.A slight decrease of elastic moduli(usually below 1 percent)on work hardening is usually associated with distortions of the crystal lattice of a metal or alloy.加工硬化自身(冷塑性加工)對(duì)彈性模量沒(méi)有什么本質(zhì)影響。冷塑性加工導(dǎo)致彈性模量輕微減小,常伴隨著金屬或合金晶體點(diǎn)陣的畸變。Plastic deformation can also cause some other structural change in the material.Work hardening can result in the formation of preferable orientations(擇優(yōu)取向),or textures(織構(gòu)),which make the material anisotropic(各向異性)and can change substantially(充分地)the elastic moduli.塑性變形會(huì)導(dǎo)致金屬結(jié)構(gòu)的改變。加工硬化能使晶體的形成晶面的擇優(yōu)取向或織構(gòu),從而導(dǎo)致材料內(nèi)部晶體結(jié)構(gòu)各向異向,從而大大改變彈性模量。Recrystallization during heating of a deformed metal also forms textures and changes appreciably the elastic moduli.變形金屬在加熱過(guò)程中的重結(jié)晶也能形成織構(gòu),從而明顯改變材料的彈性模量。Variations in elastic moduli and due to the formation and destruction of preferable orientations may reach a few tens per cent.擇優(yōu)取向的形成或減小,導(dǎo)致部分彈性系數(shù)的改變可能達(dá)到幾十個(gè)百分點(diǎn)。In textured polycrystalline materials,the magnitude of an elastic modulus depends on the direction of measurement.在已形成織構(gòu)的多晶體材料中,彈性系數(shù)的大小和測(cè)量的方向有關(guān)。Anomalous異?,F(xiàn)象Elinvar()鎳鉻鋼 Magnetic(有磁性的)effects compensate(補(bǔ)償)the normal drop of moduli with temperature.磁效應(yīng)補(bǔ)償了由于溫度而減小的彈性模量。The range of climatic variations of temperature.氣溫(-50 50)變化范圍下的異?,F(xiàn)象。Review Stress(relative/engineeringoractual/true)Strain(relative/engineeringoractual/true)HookeslawYoungsmodulus(Stiffness)ShearmodulusBulkmodulusShearstrainBulkStrainelasticmoduli nomenclature(1)Anelasticity()Hysteresis()Microscopic Macroscopic CoordinatesThermodynamicLinearityQuasi-術(shù)語(yǔ)(1)n.滯彈性 n.滯后現(xiàn)象 微觀的宏觀的坐標(biāo)熱力學(xué)的線性準(zhǔn)、偽,類(lèi)似nomenclature (2)InstantaneouslyReciprocityMicroplasticallyMacroplasticallyHysteresis loopElastic aftereffectsStress relaxationInternal frictionDissipate術(shù)語(yǔ)(2)即時(shí)地,瞬時(shí)地互惠微觀塑性(地)宏觀塑性(地)滯后環(huán)彈性后效應(yīng)力松弛內(nèi)摩擦、內(nèi)耗消耗Ideal elastic bodies理想彈性體A unique relationship between stress and strain in the elastic region 彈性范圍內(nèi)應(yīng)力和應(yīng)變有精確關(guān)系。Assumption:the load is increased infinitely slow so that the state of the system has the time to follow load variations.假定:載荷無(wú)限慢地加載,體系狀態(tài)能有足夠的時(shí)間來(lái)產(chǎn)生應(yīng)變。Or:a change in the state of a system occurs instantaneously with a change in the load.或者:載荷每一個(gè)點(diǎn)變化系統(tǒng)中都有一個(gè)實(shí)時(shí)的應(yīng)變和它對(duì)應(yīng)。The process of loading and unloading can be regarded energetically reversible.加載和卸載過(guò)程在能量上可認(rèn)為是可逆的。Anelasticity滯彈體In real bodies,the direct relationship between stress an strain is disturbed and a hysteresis loop appears on the Stress-Strain diagram 在實(shí)際受力體中,應(yīng)力和應(yīng)變間的直接關(guān)系被破壞了,應(yīng)力應(yīng)變圖中出現(xiàn)了一個(gè)滯后環(huán)。Stress-strain diagram in cyclic loading and unloading循環(huán)加載卸載中應(yīng)力應(yīng)變圖 AnelasticityAn irreversible dissipation of energy during the processes of loading and unloading;在加載和卸載中產(chǎn)生一個(gè)不可回復(fù)的能量損失。The energy dissipated in one cycle is determined as the area of the hysteresis loop in the-coordinates and is the measure of internal friction in the material.在一個(gè)循環(huán)中損失的能量由應(yīng)力應(yīng)變圖中后滯環(huán)的面積來(lái)確定。其面積也是材料內(nèi)耗的一個(gè)度量。在彈性極限內(nèi)應(yīng)變落后于應(yīng)力的現(xiàn)象稱(chēng)為滯彈性。Three different meanings of anelastic deformation:滯彈性變形的三種情況Anelastic deformation is possible without participation of dislocations;(below microscopic elastic limit)1.滯彈性可能沒(méi)有位錯(cuò)的參與。例如:它能在彈性極限下的應(yīng)力發(fā)生。它的大小不符合胡克定律,滯彈性變形需要一段時(shí)間間隔才發(fā)生,并不是及時(shí)發(fā)生的。就這而言滯彈性現(xiàn)象和塑性變形有一點(diǎn)相似性。例如,剛卸載時(shí),材料的直徑和初始直徑有一定的差別。但和塑性變形不同的是,過(guò)一段時(shí)間后,這種不同便會(huì)逐漸消失,最終沒(méi)有任何殘余變形被觀察到。這種變形應(yīng)該稱(chēng)作“偽滯彈性”。Anelastic deformation can be due to mechanically irreversible movement of dislocation;(between microscopic elastic limit and macroscopic elastic limit)2.彈性后滯也可以解釋為位錯(cuò)不可回復(fù)的運(yùn)動(dòng)而造成的。例如,當(dāng)應(yīng)力沒(méi)有達(dá)到彈性極限時(shí),有些位錯(cuò)就開(kāi)始運(yùn)動(dòng),但在到達(dá)晶體表面之前,就在晶體內(nèi)被阻塞了。當(dāng)卸載時(shí),阻礙位錯(cuò)運(yùn)動(dòng)的力消失,它們就可以回到原來(lái)的位置,所以沒(méi)有殘余變形發(fā)生。但任何位錯(cuò)的運(yùn)動(dòng)都會(huì)消耗能量,所以滯彈性現(xiàn)象在能量上是不可回復(fù)的。就這種解釋而言,滯彈性變形可以理解為可以回復(fù)的塑性變形。At still higher stresses,movement of dislocations ceased(中止)to be mechanically reversible.3.當(dāng)應(yīng)力增大到一定程度時(shí),位錯(cuò)就不可回復(fù),卸載后位錯(cuò)就不回到它原來(lái)的位置,一個(gè)可測(cè)量的變形出現(xiàn)了。無(wú)論經(jīng)過(guò)多長(zhǎng)時(shí)間彈性滯后環(huán)都不會(huì)在=0,=0處合攏。這種情況,滯彈性變形在變形機(jī)制和卸載體積殘余變化上都類(lèi)似于塑性變形。我們應(yīng)該知道的是在實(shí)際中,幾種不同的滯彈性效應(yīng)是同時(shí)發(fā)生的。在應(yīng)力超過(guò)彈性極限時(shí),偽滯彈性變形可以忽略,因?yàn)樗涂偟臏椥宰冃蜗啾葋?lái)說(shuō)很小。Elastic aftereffects and stress relaxation彈性后效和應(yīng)力松弛 把應(yīng)力和應(yīng)變的時(shí)效差異考慮在內(nèi)的話,應(yīng)描述為:(t)=M(t)where M is the static modulus of elasticity 其中M是彈性模量的狀態(tài)參數(shù).Relaxation at constant stress(a)and constant strain(b)Elastic aftereffects and stress relaxation(2)The gradual rise of strain in loading and gradual disappearance upon unloading are called respectively the direct and the reverse elastic aftereffect.加載時(shí)逐漸增加,卸載時(shí)逐漸減小的應(yīng)變,稱(chēng)為直接可回復(fù)的彈性后效The gradual variation of the stress to the value corresponding to Hookes law is called stress relaxation 應(yīng)力逐漸變化到依胡克定律理論計(jì)算的應(yīng)力大小稱(chēng)為應(yīng)力松弛。Elastic and plastic strain in stress relaxation開(kāi)始時(shí),殘余塑性變形為0,所以0=e1。塑性變形隨時(shí)間而增加,而彈性變形隨時(shí)間而減小。因?yàn)閼?yīng)力和彈性變形相伴出現(xiàn),彈性減小時(shí),應(yīng)力減小,因此應(yīng)力松弛出現(xiàn)了。nomenclature (1)Bauschinger effect InhomogeneuosDamping PrecipitationDissolutionAmplitudeResonanceAcoustic術(shù)語(yǔ)(1)包申格效應(yīng)不均勻的阻尼、衰減沉淀、析出分解、溶解振幅共振聲學(xué)的nomenclature (2)Pseudo-PseudoelasticityThermoelasticMartensite()TubularAnnealing()DeviateSuccessive術(shù)語(yǔ)(2)偽、假、虛偽彈性熱彈性的馬氏體管狀的退火偏離繼承的、連續(xù)的Internal friction內(nèi)耗Internal friction is the ability of materials to dissipate the mechanical energy obtained on load application;內(nèi)耗是材料在加載時(shí)消耗機(jī)械能的能力。The area of the hysteresis loop in the-coordinates is the measure of internal friction in the material.應(yīng)力應(yīng)變圖中彈性后滯環(huán)的面積是材料內(nèi)耗的量度。Types of hysteresis幾種彈性滯環(huán)Why internal friction?應(yīng)力感生有序產(chǎn)生內(nèi)耗;位錯(cuò)內(nèi)耗;熱流產(chǎn)生內(nèi)耗;磁致伸縮內(nèi)耗;非共格晶界內(nèi)耗應(yīng)力感生有序產(chǎn)生內(nèi)耗應(yīng)力感生有序產(chǎn)生內(nèi)耗Successive stages of deflection of a locked dislocation line at increasing stress應(yīng)力增加,一個(gè)被鎖住的位錯(cuò)連續(xù)的彎曲變形Stress-dislocation strain relationship for the model 模型中應(yīng)力位錯(cuò)應(yīng)變關(guān)系The Bauschinger effect包申格效應(yīng)金屬材料經(jīng)過(guò)預(yù)先加載產(chǎn)生少量塑性變形(殘余應(yīng)變小于4%),而后再同向加載,規(guī)定殘余伸長(zhǎng)應(yīng)力增加;反向加載,規(guī)定殘余伸長(zhǎng)應(yīng)力減少的現(xiàn)象叫做包申格效應(yīng);包申格應(yīng)變:在給定應(yīng)力條件下,拉伸卸載后第二次拉伸與拉伸卸載后第二次壓縮兩曲線之間的應(yīng)變差。Bauschinger effect in twisted tubular steel specimen管狀鋼扭轉(zhuǎn)時(shí)發(fā)生的包申格效應(yīng) Anisotropy of slip barriers causing Bauschinger effect各向異性導(dǎo)致的滑移障礙造成的包申格效應(yīng)Significance of anelastic phenomena滯彈性現(xiàn)象的重要性Instrument-making,elastic element,bells or musical instruments 常用來(lái)制造樂(lè)器、彈性器件、鈴和其它樂(lè)器。High damping capacity:diminish noise,avoid failures due to resonance 高的阻尼衰減能力,能消除噪音,減小由于共振而造成的失真。Inhomogeneity,local microplastic deformation,internal transformation,superplastic alloys etc for High-damping application.結(jié)構(gòu)不均,局部微觀塑性變形,內(nèi)部變形,高塑性合金等可應(yīng)用高阻尼衰減場(chǎng)合。Psudoelasticity and shape memory effect偽彈體和形狀記憶效應(yīng)Anomalous mechanical behaviour:thermoelastic martensitic transformation;異常變化機(jī)制:馬氏體熱彈性轉(zhuǎn)變Psudoelasticity(or superelasticity)and“shape memory”偽彈體和形狀記憶Martensitic transformation at an external stress;在外力作用下的馬氏體相變Reverse transformation by heating;由于加熱而造成的可逆變形。Ni-Ti,Cu-Al-Ti,etc.在一定的溫度下,發(fā)現(xiàn)多種合金中應(yīng)力達(dá)到一定水平后會(huì)發(fā)生馬氏體相變,即所謂的馬氏體相變,伴隨應(yīng)力誘導(dǎo)相變,產(chǎn)生偽彈性現(xiàn)象,偽彈性變形的量級(jí)大約在6%左右,大大超過(guò)正常彈性變形,形狀記憶合金即是利用此做成的。
收藏