大卡車液壓助力轉(zhuǎn)向系統(tǒng)設(shè)計(jì)
大卡車液壓助力轉(zhuǎn)向系統(tǒng)設(shè)計(jì),大卡車液壓助力轉(zhuǎn)向系統(tǒng)設(shè)計(jì),卡車,液壓,助力,轉(zhuǎn)向,系統(tǒng),設(shè)計(jì)
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì)附錄AHow Car Steering Worksby Karim NiceYou know that when you turn the steering wheel in your car, the wheels turn. Cause and effect, right? But a lot of interesting stuff goes on between the steering wheel and the tires to make this happen.Up Next Car Suspension Quiz How Car Suspensions Work Discovery.com: Rocket Shock Absorbers In this article, well see how the two most common types of car steering systems work: rack-and-pinion and recirculating-ball steering. Then well examine power steering and find out about some interesting future developments in steering systems, driven mostly by the need to increase the fuel efficiency of cars. But first, lets see what you have to do turn a car. Its not quite as simple as you might think!When it comes to crucial automotive systems, steering is right up there with the engine and the brakes. The inner workings of this important component are pretty cool.Turning the CarYou might be surprised to learn that when you turn your car, your front wheels are not pointing in the same direction. For a car to turn smoothly, each wheel must follow a different circle. Since the inside wheel is following a circle with a smaller radius, it is actually making a tighter turn than the outside wheel. If you draw a line perpendicular to each wheel, the lines will intersect at the center point of the turn. The geometry of the steering linkage makes the inside wheel turn more than the outside wheel. There are a couple different types of steering gears. The most common are rack-and-pinion and recirculating ball. Rack-and-pinion SteeringRack-and-pinion steering is quickly becoming the most common type of steering on cars, small trucks and SUVs. It is actually a pretty simple mechanism. A rack-and-pinion gearset is enclosed in a metal tube, with each end of the rack protruding from the tube. A rod, called a tie rod, connects to each end of the rack.The pinion gear is attached to the steering shaft. When you turn the steering wheel, the gear spins, moving the rack. The tie rod at each end of the rack connects to the steering arm on the spindle (see diagram above). The rack-and-pinion gearset does two things: It converts the rotational motion of the steering wheel into the linear motion needed to turn the wheels. It provides a gear reduction, making it easier to turn the wheels. On most cars, it takes three to four complete revolutions of the steering wheel to make the wheels turn from lock to lock (from far left to far right). The steering ratio is the ratio of how far you turn the steering wheel to how far the wheels turn. For instance, if one complete revolution (360 degrees) of the steering wheel results in the wheels of the car turning 20 degrees, then the steering ratio is 360 divided by 20, or 18:1. A higher ratio means that you have to turn the steering wheel more to get the wheels to turn a given distance. However, less effort is required because of the higher gear ratio. Generally, lighter, sportier cars have lower steering ratios than larger cars and trucks. The lower ratio gives the steering a quicker response - you dont have to turn the steering wheel as much to get the wheels to turn a given distance - which is a desirable trait in sports cars. These smaller cars are light enough that even with the lower ratio, the effort required to turn the steering wheel is not excessive. Some cars have variable-ratio steering, which uses a rack-and-pinion gearset that has a different tooth pitch (number of teeth per inch) in the center than it has on the outside. This makes the car respond quickly when starting a turn (the rack is near the center), and also reduces effort near the wheels turning limits. Power Rack-and-pinionWhen the rack-and-pinion is in a power-steering system, the rack has a slightly different design. Part of the rack contains a cylinder with a piston in the middle. The piston is connected to the rack. There are two fluid ports, one on either side of the piston. Supplying higher-pressure fluid to one side of the piston forces the piston to move, which in turn moves the rack, providing the power assist. Well check out the components that provide the high-pressure fluid, as well as decide which side of the rack to supply it to, later in the article. First, lets take a look at another type of steering. Recirculating-ball SteeringRecirculating-ball steering is used on many trucks and SUVs today. The linkage that turns the wheels is slightly different than on a rack-and-pinion system. The recirculating-ball steering gear contains a worm gear. You can image the gear in two parts. The first part is a block of metal with a threaded hole in it. This block has gear teeth cut into the outside of it, which engage a gear that moves the pitman arm (see diagram above). The steering wheel connects to a threaded rod, similar to a bolt, that sticks into the hole in the block. When the steering wheel turns, it turns the bolt. Instead of twisting further into the block the way a regular bolt would, this bolt is held fixed so that when it spins, it moves the block, which moves the gear that turns the wheels. Instead of the bolt directly engaging the threads in the block, all of the threads are filled with ball bearings that recirculate through the gear as it turns. The balls actually serve two purposes: First, they reduce friction and wear in the gear; second, they reduce slop in the gear. Slop would be felt when you change the direction of the steering wheel - without the balls in the steering gear, the teeth would come out of contact with each other for a moment, making the steering wheel feel loose. Power steering in a recirculating-ball system works similarly to a rack-and-pinion system. Assist is provided by supplying higher-pressure fluid to one side of the block. Now lets take a look at the other components that make up a power-steering system. Power SteeringThere are a couple of key components in power steering in addition to the rack-and-pinion or recirculating-ball mechanism. PumpThe hydraulic power for the steering is provided by a rotary-vane pump (see diagram below). This pump is driven by the cars engine via a belt and pulley. It contains a set of retractable vanes that spin inside an oval chamber. As the vanes spin, they pull hydraulic fluid from the return line at low pressure and force it into the outlet at high pressure. The amount of flow provided by the pump depends on the cars engine speed. The pump must be designed to provide adequate flow when the engine is idling. As a result, the pump moves much more fluid than necessary when the engine is running at faster speeds. The pump contains a pressure-relief valve to make sure that the pressure does not get too high, especially at high engine speeds when so much fluid is being pumped. 附錄B汽車轉(zhuǎn)向系統(tǒng)工作原路介紹 Karim Nice 著顯而易見(jiàn),當(dāng)你坐在車?yán)镛D(zhuǎn)動(dòng)方向盤時(shí)。車輪會(huì)跟著運(yùn)動(dòng)。像一對(duì)因果關(guān)系,是吧?但是其中是有很多令人感興趣的部件在方向盤和輪胎之間運(yùn)動(dòng)才構(gòu)成了我們以上看的原因和結(jié)果。在這篇文章中,我們將看到兩種最常見(jiàn)的轉(zhuǎn)向系統(tǒng)是如何工作的:齒輪齒條式轉(zhuǎn)向器和循環(huán)球式轉(zhuǎn)向器。然后我們會(huì)研究一下動(dòng)力轉(zhuǎn)向并發(fā)現(xiàn)些令人欣喜的轉(zhuǎn)向系統(tǒng)未來(lái)發(fā)展動(dòng)向,其中大部分是由提高汽車燃油效率驅(qū)使產(chǎn)生的。但是首先,讓我們看看你想讓一輛汽車轉(zhuǎn)向都需要做些什么。其中的過(guò)程可能并不像你想象的那么簡(jiǎn)單。當(dāng)說(shuō)到汽車行駛的關(guān)鍵系統(tǒng)時(shí),轉(zhuǎn)向系統(tǒng)當(dāng)然地成為和發(fā)動(dòng)機(jī)系統(tǒng),制動(dòng)系統(tǒng)處于同樣重要的地位。這個(gè)至關(guān)重要的部分內(nèi)部的工作過(guò)程也是相當(dāng)激動(dòng)人心的。汽車的轉(zhuǎn)向當(dāng)你控制汽車轉(zhuǎn)彎的時(shí)候你車的前輪并沒(méi)有只指向同一個(gè)方向,在了解到這些的時(shí)候你可能會(huì)很奇怪。要想讓汽車轉(zhuǎn)向平順,每個(gè)車輪就必須沿著不同的軌跡運(yùn)動(dòng)。因?yàn)閮?nèi)側(cè)輪胎是沿著較小半徑的圓周軌跡運(yùn)動(dòng)的。如果沿著每個(gè)車輪做一條垂直線,這些線會(huì)相交于轉(zhuǎn)向軌跡的中心點(diǎn)。轉(zhuǎn)向系統(tǒng)聯(lián)動(dòng)裝置的幾何學(xué)特性使得內(nèi)側(cè)車輪轉(zhuǎn)向角度比外側(cè)車輪大些。通常是有好幾種不同類型的轉(zhuǎn)向齒輪。最常見(jiàn)的就是齒輪齒條式和循環(huán)球式。齒輪齒條式轉(zhuǎn)向器齒輪齒條式轉(zhuǎn)向器迅速成為轎車,小型卡車以及多功能越野車轉(zhuǎn)向器中最普遍的型式。它確實(shí)是一種比較簡(jiǎn)單的機(jī)構(gòu)。一套出輪齒條嚙合裝置被封裝在一根金屬管子里,齒條分別從管子末端深處。有根干,叫做轉(zhuǎn)向拉桿,分別連在管架的末端。齒輪齒條轉(zhuǎn)向器的齒輪是連在轉(zhuǎn)向軸上的。當(dāng)轉(zhuǎn)動(dòng)方向盤時(shí),齒輪轉(zhuǎn)動(dòng)推動(dòng)齒條移動(dòng)。齒條末端的橫拉桿連接于轉(zhuǎn)向節(jié)上的轉(zhuǎn)向臂上。齒輪齒條轉(zhuǎn)系機(jī)構(gòu)做完成兩件事:它將方向盤的轉(zhuǎn)動(dòng)轉(zhuǎn)化成轉(zhuǎn)動(dòng)車輪所需要的直線運(yùn)動(dòng)。在大多數(shù)汽車上,一般需要轉(zhuǎn)動(dòng)三到四圈方向盤才能使車輪從左止點(diǎn)到右止點(diǎn)。轉(zhuǎn)向系傳動(dòng)比是指轉(zhuǎn)動(dòng)方向盤角度和車輪轉(zhuǎn)動(dòng)角度的比率。具體說(shuō)就是,如果轉(zhuǎn)動(dòng)方向盤一周車輪隨之轉(zhuǎn)動(dòng)二十度,實(shí)際上轉(zhuǎn)向傳動(dòng)比是360除以20,也就是18:1。跟高的轉(zhuǎn)向傳動(dòng)比意味著你需要更大的方向盤轉(zhuǎn)角才能達(dá)到同樣的車輪轉(zhuǎn)角。當(dāng)然,高傳動(dòng)比也意味著更小的力量。大體說(shuō)來(lái),質(zhì)量小,更為運(yùn)動(dòng)型的汽車相比大型轎車和卡車擁有更小的轉(zhuǎn)向比。小傳動(dòng)比意味著更快的轉(zhuǎn)向反應(yīng)-你無(wú)需再費(fèi)力的轉(zhuǎn)動(dòng)方向盤才能達(dá)到指定的車輪轉(zhuǎn)角這就是跑車所要求的理想特性。這些小型汽車可以用更小的轉(zhuǎn)向比,因?yàn)樵谫|(zhì)量上足夠輕,轉(zhuǎn)動(dòng)車輪所需的轉(zhuǎn)向力并沒(méi)超過(guò)要求。一部分汽車使用可變轉(zhuǎn)向比,它使用一種在中間和兩邊具有不同的齒間距的齒輪齒條嚙合裝置。這使得汽車在剛開始轉(zhuǎn)彎后能迅速做出反應(yīng)(齒條在中間位置附近),同時(shí)也降低了轉(zhuǎn)向力限制位置時(shí)的轉(zhuǎn)向力。動(dòng)力齒輪齒條轉(zhuǎn)向系統(tǒng)當(dāng)齒輪齒條在動(dòng)力轉(zhuǎn)向系統(tǒng)中時(shí),齒條的設(shè)計(jì)略有不同。齒條中間位置包含有一個(gè)氣缸與活塞?;钊B接到齒條上。在活塞兩端各有一個(gè)液壓缸。在活塞的一端提供高壓油液以推動(dòng)活塞移動(dòng),繼而推動(dòng)齒條移動(dòng),提供轉(zhuǎn)向助力。在接下來(lái)的段落里,我們將詳細(xì)了解一下提供高壓油液的組件,然后決定向齒條的哪一方提供高壓油液。首先,讓我們來(lái)看看另一種類型的轉(zhuǎn)向器。循環(huán)球轉(zhuǎn)向現(xiàn)在循許多卡車和SUV使用的是循環(huán)球轉(zhuǎn)向器。它使車輪轉(zhuǎn)動(dòng)的聯(lián)動(dòng)裝置與齒輪齒條轉(zhuǎn)向系統(tǒng)略有不同。循環(huán)球轉(zhuǎn)向機(jī)構(gòu)內(nèi)包含有一個(gè)蝸輪。您可以把這個(gè)齒輪想象成兩部分。第一部分是一塊帶有內(nèi)螺紋孔的金屬塊。這個(gè)金屬塊外側(cè)有切好的齒形,齒形是專門用來(lái)嚙合一個(gè)使轉(zhuǎn)向拉桿移動(dòng)的齒輪。方向盤連接到螺紋桿上,類似于一個(gè)連接到金屬塊上的螺桿。當(dāng)方向盤轉(zhuǎn)動(dòng)時(shí)它推動(dòng)螺桿運(yùn)動(dòng)。與一般的螺桿隨著旋入螺母的加深不同,這種螺桿在旋轉(zhuǎn)時(shí)是固定不動(dòng)的,并推動(dòng)螺母移動(dòng),螺母使嚙合的齒輪轉(zhuǎn)動(dòng)最終轉(zhuǎn)動(dòng)車輪。與螺桿直接嚙合轉(zhuǎn)向螺母不同,所有嚙合螺紋都充滿了滾珠球軸承環(huán)繞著,齒輪嚙合副轉(zhuǎn)動(dòng)時(shí)能繞著螺紋圓周轉(zhuǎn)動(dòng)的鋼球。鋼球?qū)嶋H上兩個(gè)功能:首先,它們減少齒輪嚙合副的摩擦和磨損;第二,它們減小齒間間隙。當(dāng)改變向方向盤轉(zhuǎn)動(dòng)方向的時(shí)候你就會(huì)感覺(jué)間隙,轉(zhuǎn)向時(shí)好像感覺(jué)不到鋼球,齒型將脫離彼此接觸了一會(huì)兒,使方向盤感覺(jué)松曠。 動(dòng)力轉(zhuǎn)向的循環(huán)球轉(zhuǎn)向系統(tǒng)的運(yùn)動(dòng)方式類似于齒輪齒條系統(tǒng)。所提供的助力是高壓力液體推動(dòng)轉(zhuǎn)向螺母的一側(cè)產(chǎn)生的?,F(xiàn)在讓我們來(lái)看看動(dòng)力轉(zhuǎn)向系統(tǒng)中的其他組成部分。動(dòng)力轉(zhuǎn)向無(wú)論循環(huán)球轉(zhuǎn)向器還是齒輪齒條轉(zhuǎn)向器的動(dòng)力轉(zhuǎn)向系統(tǒng)中都有幾個(gè)重要組成部分。泵液壓動(dòng)力轉(zhuǎn)向是由旋轉(zhuǎn)葉片泵提供的(如下圖) 。這種泵的動(dòng)力是汽車的發(fā)動(dòng)機(jī)通過(guò)皮帶和帶輪驅(qū)動(dòng)的。它包含了一套可移動(dòng)的葉片,附帶一個(gè)橢圓形的內(nèi)腔。隨著葉片旋轉(zhuǎn),葉片從回油道中吸進(jìn)低壓油并將其變成高壓油擠壓出去,并迫使它變成出口高壓。泵所提供的油液總量取決于轎車的引擎轉(zhuǎn)速。該泵的設(shè)計(jì)必須使發(fā)動(dòng)機(jī)空轉(zhuǎn)時(shí)也能提供充足的液體。因此,在發(fā)動(dòng)機(jī)以更高的轉(zhuǎn)速運(yùn)行時(shí)該泵產(chǎn)生的高壓油液超過(guò)正常需要。泵包含一個(gè)壓力安全閥,以確保壓力不會(huì)太高,尤其是在發(fā)動(dòng)機(jī)轉(zhuǎn)速高時(shí),產(chǎn)生大量的高壓油液。16
收藏