《高考數(shù)學(xué)一輪復(fù)習(xí):46 兩條直線的位置關(guān)系》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí):46 兩條直線的位置關(guān)系(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、高考數(shù)學(xué)一輪復(fù)習(xí):46 兩條直線的位置關(guān)系姓名:_ 班級(jí):_ 成績(jī):_一、 單選題 (共12題;共24分)1. (2分) (2018高二上哈爾濱月考) 下列說(shuō)法的正確的是( ) A . 經(jīng)過(guò)定點(diǎn) 的直線的方程都可以表示為 B . 經(jīng)過(guò)定點(diǎn) 的直線的方程都可以表示為 C . 不經(jīng)過(guò)原點(diǎn)的直線的方程都可以表示為 D . 經(jīng)過(guò)任意兩個(gè)不同的點(diǎn) 、 的直線的方程都可以表示為 2. (2分) 若,則直線 +=1必不經(jīng)過(guò)( )A . 第一象限B . 第二象限C . 第三象限D(zhuǎn) . 第四象限3. (2分) 設(shè)函數(shù) , 其中表示不超過(guò)x的最大整數(shù),如 , .若直線與函數(shù)f(x)的圖象恰好有3個(gè)不同的交點(diǎn),則實(shí)
2、數(shù)k的取值范圍是( )A . B . C . D . 4. (2分) (2017高一下牡丹江期末) 與直線3 x 4 y + 5 = 0 關(guān)于 軸對(duì)稱的直線方程為( )A . 3 x + 4 y 5 = 0B . 3 x + 4 y + 5 = 0C . 3 x 4 y + 5 = 0D . 3 x 4 y 5 = 05. (2分) 如果直線(m+4)x+(m+2)y+4=0與直線(m+2)x+(m+1)y-1=0互相平行,則實(shí)數(shù)m的值等于( )A . 0B . 2C . -2D . 0或-26. (2分) 在平面直角坐標(biāo)系中,點(diǎn)P (-1,2 ) 關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)為A . (2,-3
3、)B . (1,-2 )C . (2,-1 )D . (-2,1 )7. (2分) 雙曲線x2-y2=4左支上一點(diǎn)P(a,b)到直線y=x的距離為 , 則a+b=( )A . 2B . -2C . 4D . -48. (2分) 若函數(shù),函數(shù),則的最小值為( )A . B . C . D . 9. (2分) 規(guī)定表示兩個(gè)數(shù)中的最小的數(shù),若函數(shù)的圖像關(guān)于直線對(duì)稱,則的值是( )A . -1B . 1C . 2D . -210. (2分) 如果直線 與直線 互相垂直,則實(shí)數(shù) ( ) A . 1B . C . D . 11. (2分) 若P(a,b),Q(c,d)都在直線y=mx+k上,則|PQ|用a
4、,c,m表示為( )A . B . |m(a-c)|C . D . 12. (2分) (2017高一下欽州港期末) 直線l過(guò)P(1,2),且A(2,3),B(4,5)到l的距離相等,則直線l的方程是( ) A . 4x+y6=0B . x+4y6=0C . 3x+2y7=0或4x+y6=0D . 2x+3y7=0或x+4y6=0二、 填空題 (共5題;共5分)13. (1分) 點(diǎn)M(2,1)關(guān)于直線x+y+1=0的對(duì)稱點(diǎn)的坐標(biāo)是_14. (1分) 若直線l1:2x+my+1=0與直線l2:y=3x1平行,則m=_15. (1分) (2019臨沂模擬) 若 ,則定義直線 為曲線 , 的“分界直線
5、”已知 ,則 的“分界直線”為_(kāi) 16. (1分) 已知兩點(diǎn) 到直線l的距離等于a,且這樣的直線l可作4條,則a的取值范圍是_ 17. (1分) 已知:點(diǎn)A(2,3),M(1,1),點(diǎn)A關(guān)于點(diǎn)M成中心對(duì)稱,則點(diǎn)A的坐標(biāo)是_三、 解答題 (共5題;共45分)18. (5分) (2016高一下姜堰期中) 過(guò)點(diǎn)P(3,4)作直線l,當(dāng)l的斜率為何值時(shí) (1) l將圓(x1)2+(y+2)2=4平分? (2) l與圓(x1)2+(y+2)2=4相切? (3) l與圓(x1)2+(y+2)2=4相交且所截得弦長(zhǎng)=2? 19. (10分) 求經(jīng)過(guò)點(diǎn)A(2,1)且與點(diǎn)B(1,1)的距離為3的直線方程 20.
6、 (10分) (2016高一下南京期末) 在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,4),直線l:x2y+1=0 (1) 若點(diǎn)M在直線l上,且AMl,求點(diǎn)M的坐標(biāo) (2) 求過(guò)點(diǎn)A且平行于l的直線的方程; (3) 若點(diǎn)M在直線l上,且AMl,求點(diǎn)M的坐標(biāo) 21. (10分) (2019高二上上海期中) 如圖,在平面直角坐標(biāo)系中,已知矩形 的長(zhǎng)為2,寬為1, , 邊分別在 軸、 軸的正半軸上, 點(diǎn)與坐標(biāo)原點(diǎn)重合,將矩形折疊,使 點(diǎn)落在線段 上,設(shè)此點(diǎn)為 . (1) 若折痕的斜率為-1,求折痕所在的直線的方程; (2) 若折痕的斜率為-1,求折痕所在的直線的方程; (3) 若折痕所在直線的斜率為 ,
7、( 為常數(shù)),試用 表示點(diǎn) 的坐標(biāo),并求折痕所在的直線的方程; (4) 若折痕所在直線的斜率為 ,( 為常數(shù)),試用 表示點(diǎn) 的坐標(biāo),并求折痕所在的直線的方程; (5) 當(dāng) 時(shí),求折痕長(zhǎng)的最大值. (6) 當(dāng) 時(shí),求折痕長(zhǎng)的最大值. 22. (10分) (2018高二上雅安月考) 光線通過(guò)點(diǎn) ,在直線 上反射,反射光線經(jīng)過(guò)點(diǎn) . (1) 求點(diǎn) 關(guān)于直線 對(duì)稱點(diǎn)的坐標(biāo); (2) 求反射光線所在直線的一般式方程 第 7 頁(yè) 共 7 頁(yè)參考答案一、 單選題 (共12題;共24分)1-1、2-1、答案:略3-1、答案:略4-1、5-1、答案:略6-1、答案:略7-1、答案:略8-1、答案:略9-1、10-1、11-1、答案:略12-1、答案:略二、 填空題 (共5題;共5分)13-1、14-1、答案:略15-1、16-1、17-1、三、 解答題 (共5題;共45分)18-1、答案:略18-2、答案:略18-3、答案:略19-1、答案:略20-1、答案:略20-2、答案:略20-3、答案:略21-1、答案:略21-2、答案:略21-3、答案:略21-4、答案:略21-5、答案:略21-6、答案:略22-1、答案:略22-2、答案:略