《2022年高中數(shù)學(xué) 第二章《橢圓及其標(biāo)準(zhǔn)方程》教案 新人教A版選修2-1》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué) 第二章《橢圓及其標(biāo)準(zhǔn)方程》教案 新人教A版選修2-1(2頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高中數(shù)學(xué) 第二章橢圓及其標(biāo)準(zhǔn)方程教案 新人教A版選修2-1 知識(shí)與技能目標(biāo)理解橢圓的概念,掌握橢圓的定義、會(huì)用橢圓的定義解決實(shí)際問題;理解橢圓標(biāo)準(zhǔn)方程的推導(dǎo)過程及化簡無理方程的常用的方法;了解求橢圓的動(dòng)點(diǎn)的伴隨點(diǎn)的軌跡方程的一般方法 過程與方法目標(biāo)(1)預(yù)習(xí)與引入過程當(dāng)變化的平面與圓錐軸所成的角在變化時(shí),觀察平面截圓錐的截口曲線(截面與圓錐側(cè)面的交線)是什么圖形?又是怎么樣變化的?特別是當(dāng)截面不與圓錐的軸線或圓錐的母線平行時(shí),截口曲線是橢圓,再觀察或操作了課件后,提出兩個(gè)問題:第一、你能理解為什么把圓、橢圓、雙曲線和拋物線叫做圓錐曲線;第二、你能舉出現(xiàn)實(shí)生活中圓錐曲線的例子當(dāng)學(xué)生把上
2、述兩個(gè)問題回答清楚后,要引導(dǎo)學(xué)生一起探究P41頁上的問題(同桌的兩位同學(xué)準(zhǔn)備無彈性的細(xì)繩子一條(約10cm長,兩端各結(jié)一個(gè)套),教師準(zhǔn)備無彈性細(xì)繩子一條(約60cm,一端結(jié)個(gè)套,另一端是活動(dòng)的),圖釘兩個(gè))當(dāng)套上鉛筆,拉緊繩子,移動(dòng)筆尖,畫出的圖形是橢圓啟發(fā)性提問:在這一過程中,你能說出移動(dòng)的筆?。▌?dòng)點(diǎn))滿足的幾何條件是什么?板書211橢圓及其標(biāo)準(zhǔn)方程(2)新課講授過程(i)由上述探究過程容易得到橢圓的定義板書把平面內(nèi)與兩個(gè)定點(diǎn),的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡叫做橢圓(ellipse)其中這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩定點(diǎn)間的距離叫做橢圓的焦距即當(dāng)動(dòng)點(diǎn)設(shè)為時(shí),橢圓即為點(diǎn)集(ii)橢圓標(biāo)準(zhǔn)方
3、程的推導(dǎo)過程提問:已知圖形,建立直角坐標(biāo)系的一般性要求是什么?第一、充分利用圖形的對(duì)稱性;第二、注意圖形的特殊性和一般性關(guān)系 無理方程的化簡過程是教學(xué)的難點(diǎn),注意無理方程的兩次移項(xiàng)、平方整理 設(shè)參量的意義:第一、便于寫出橢圓的標(biāo)準(zhǔn)方程;第二、的關(guān)系有明顯的幾何意義 類比:寫出焦點(diǎn)在軸上,中心在原點(diǎn)的橢圓的標(biāo)準(zhǔn)方程(iii)例題講解與引申例1 已知橢圓兩個(gè)焦點(diǎn)的坐標(biāo)分別是,并且經(jīng)過點(diǎn),求它的標(biāo)準(zhǔn)方程分析:由橢圓的標(biāo)準(zhǔn)方程的定義及給出的條件,容易求出引導(dǎo)學(xué)生用其他方法來解另解:設(shè)橢圓的標(biāo)準(zhǔn)方程為,因點(diǎn)在橢圓上,則例2 如圖,在圓上任取一點(diǎn),過點(diǎn)作軸的垂線段,為垂足當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),線段的中點(diǎn)的軌跡
4、是什么?分析:點(diǎn)在圓上運(yùn)動(dòng),由點(diǎn)移動(dòng)引起點(diǎn)的運(yùn)動(dòng),則稱點(diǎn)是點(diǎn)的伴隨點(diǎn),因點(diǎn)為線段的中點(diǎn),則點(diǎn)的坐標(biāo)可由點(diǎn)來表示,從而能求點(diǎn)的軌跡方程引申:設(shè)定點(diǎn),是橢圓上動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程解法剖析:(代入法求伴隨軌跡)設(shè),;(點(diǎn)與伴隨點(diǎn)的關(guān)系)為線段的中點(diǎn),;(代入已知軌跡求出伴隨軌跡),點(diǎn)的軌跡方程為;伴隨軌跡表示的范圍例3如圖,設(shè),的坐標(biāo)分別為,直線,相交于點(diǎn),且它們的斜率之積為,求點(diǎn)的軌跡方程分析:若設(shè)點(diǎn),則直線,的斜率就可以用含的式子表示,由于直線,的斜率之積是,因此,可以求出之間的關(guān)系式,即得到點(diǎn)的軌跡方程解法剖析:設(shè)點(diǎn),則,;代入點(diǎn)的集合有,化簡即可得點(diǎn)的軌跡方程引申:如圖,設(shè)的兩個(gè)頂點(diǎn),
5、頂點(diǎn)在移動(dòng),且,且,試求動(dòng)點(diǎn)的軌跡方程引申目的有兩點(diǎn):讓學(xué)生明白題目涉及問題的一般情形;當(dāng)值在變化時(shí),線段的角色也是從橢圓的長軸圓的直徑橢圓的短軸 情感、態(tài)度與價(jià)值觀目標(biāo)通過作圖展示與操作,必須讓學(xué)生認(rèn)同:圓、橢圓、雙曲線和拋物線都是圓錐曲線,是因它們都是平面與圓錐曲面相截而得其名;必須讓學(xué)生認(rèn)同與體會(huì):橢圓的定義及特殊情形當(dāng)常數(shù)等于兩定點(diǎn)間距離時(shí),軌跡是線段;必須讓學(xué)生認(rèn)同與理解:已知幾何圖形建立直角坐標(biāo)系的兩個(gè)原則,及引入?yún)⒘康囊饬x,培養(yǎng)學(xué)生用對(duì)稱的美學(xué)思維來體現(xiàn)數(shù)學(xué)的和諧美;讓學(xué)生認(rèn)同與領(lǐng)悟:例1使用定義解題是首選的,但也可以用其他方法來解,培養(yǎng)學(xué)生從定義的角度思考問題的好習(xí)慣;例2是典
6、型的用代入法求動(dòng)點(diǎn)的伴隨點(diǎn)的軌跡,培養(yǎng)學(xué)生的辯證思維方法,會(huì)用分析、聯(lián)系的觀點(diǎn)解決問題;通過例3培養(yǎng)學(xué)生的對(duì)問題引申、分段討論的思維品質(zhì)能力目標(biāo)(1) 想象與歸納能力:能根據(jù)課程的內(nèi)容能想象日常生活中哪些是橢圓、雙曲線和拋物線的實(shí)際例子,能用數(shù)學(xué)符號(hào)或自然語言的描述橢圓的定義,能正確且直觀地繪作圖形,反過來根據(jù)圖形能用數(shù)學(xué)術(shù)語和數(shù)學(xué)符號(hào)表示(2) 思維能力:會(huì)把幾何問題化歸成代數(shù)問題來分析,反過來會(huì)把代數(shù)問題轉(zhuǎn)化為幾何問題來思考,培養(yǎng)學(xué)生的數(shù)形結(jié)合的思想方法;培養(yǎng)學(xué)生的會(huì)從特殊性問題引申到一般性來研究,培養(yǎng)學(xué)生的辯證思維能力(3) 實(shí)踐能力:培養(yǎng)學(xué)生實(shí)際動(dòng)手能力,綜合利用已有的知識(shí)能力(4) 數(shù)學(xué)活動(dòng)能力:培養(yǎng)學(xué)生觀察、實(shí)驗(yàn)、探究、驗(yàn)證與交流等數(shù)學(xué)活動(dòng)能力(5) 創(chuàng)新意識(shí)能力:培養(yǎng)學(xué)生思考問題、并能探究發(fā)現(xiàn)一些問題的能力,探究解決問題的一般的思想、方法和途徑練習(xí):第45頁1、2、3、4、作業(yè):第53頁2、3、