畢業(yè)設(shè)計(jì)-分線(xiàn)盒注塑模具設(shè)計(jì)(含全套CAD圖紙)
畢業(yè)設(shè)計(jì)-分線(xiàn)盒注塑模具設(shè)計(jì)(含全套CAD圖紙),畢業(yè)設(shè)計(jì),分線(xiàn)盒,注塑,模具設(shè)計(jì),全套,cad,圖紙
摘 要
分析了分線(xiàn)盒的結(jié)構(gòu)特征,使用Pro/E軟件進(jìn)行分模設(shè)計(jì),利用注塑模設(shè)計(jì)專(zhuān)家(EMX)外掛進(jìn)行其模架的設(shè)計(jì)。為了減少試模次數(shù),降低設(shè)計(jì)成本,選用Moldflow軟件對(duì)塑件進(jìn)行模具設(shè)計(jì)的優(yōu)化分析,并對(duì)分線(xiàn)盒注塑模進(jìn)行了流動(dòng)模擬分析。
在進(jìn)行塑件3D設(shè)計(jì)后,利用CAD進(jìn)行2D的排位,制圖和出圖。主要注射模的定模機(jī)構(gòu)、動(dòng)模機(jī)構(gòu)、澆注系統(tǒng)、導(dǎo)向裝置、頂出機(jī)構(gòu)、抽芯機(jī)構(gòu)、冷卻和加熱裝置、排氣系統(tǒng)等的設(shè)計(jì)。
塑件流動(dòng)模擬分析內(nèi)容包括:充填分析、保壓分析、殘余應(yīng)力分析。主要包括,充填時(shí)間、平均速度、氣穴、熔接痕、體積收縮率、塑件變形等,由此獲得滿(mǎn)意合理的澆口數(shù)量和位置。
分析了降低塑件成本的方法,針對(duì)批量不大的不同規(guī)格結(jié)構(gòu)形式的分線(xiàn)盒,設(shè)計(jì)成一模多用的模具。只需更換模具中的幾個(gè)關(guān)鍵零件就可以生產(chǎn)多規(guī)格形式的塑件,減少模具數(shù)量,成本費(fèi)大幅度減少。
關(guān)鍵詞:分線(xiàn)盒; CAD/CAE; 流動(dòng)分析; 一模多用; 滑動(dòng)型芯
ABSTRACT
Analyzes the structural characteristics of junction box,using Pro / E software for junction box design, use of injection mold design experts (EMX) plug-in for its mold design.?To reduce the testing model, lower cost, and use Moldflow software for plastic mold design optimization analysis, and the junction box for simulation.?
After plastic 3D design course,using CAD software for qualifying, drawing.?Fixed the mold main body, the dynamic model agencies, casting systems, guiding device, top the body, core-pulling mechanism, cooling and heating equipment, exhaust system design.?
Plastic flow simulation analysis include: filling analysis, packing analysis, residual stress analysis.?Include, filling time, average speed, air traps, weld lines, volume shrinkage, plastic deformation, thus reasonably satisfactory number and location of the gate.?
A multi-purpose injection mould for an adapter junction box was developed.With replacement of some key components in the mould,various specifications and structures of adapter junction box can be made and therefore the manufacturing costs are reduced.
Keywords: adapter junction box; CAD/CAE; Moldflow; multi-purpose mould; sliding core
1. 緒論 1
2. 塑件工藝分析 1
2.1 塑件分析 1
2.2 塑件的原材料分析及工藝參數(shù) 3
2.2.1 塑件的原材料分析 3
2.3 HPVC的注射工藝參數(shù) 3
2.4 HPVC的主要性能指標(biāo) 3
3. 注塑機(jī)的選型 4
3.1 所需注射量的計(jì)算 4
3.1.1 塑件質(zhì)量、體積計(jì)算 4
3.2 注射機(jī)型號(hào)的選擇 4
3.3 型腔數(shù)量及注射機(jī)有關(guān)工藝參數(shù)的校核 5
3.1.1 型腔數(shù)量的校核 5
3.1.2 注射機(jī)工藝參數(shù)的校核 6
3.1.3 安裝尺寸校核 6
3.1.4 開(kāi)模行程和推出機(jī)構(gòu)的校核 7
3.1.5 模具尺寸與拉桿內(nèi)間距校核 7
4. 分型面的選擇 7
4.1 確定型腔數(shù)量和排列方式 8
5. 澆注系統(tǒng)設(shè)計(jì) 9
5.1 主流道的設(shè)計(jì) 9
5.2 主流道襯套的形式 9
5.3 澆口的結(jié)構(gòu)形式 10
5.4 澆注系統(tǒng)的平衡 11
6. 成型零件的結(jié)構(gòu)設(shè)計(jì)和尺寸設(shè)計(jì) 11
6.1 成型零部件的結(jié)構(gòu)形式 11
6.1.1 凸凹模的結(jié)構(gòu)設(shè)計(jì) 11
6.1.2 成型零部件的工作尺寸的計(jì)算 11
6.1.3 型腔零件強(qiáng)度、剛度的校核 13
7. 脫模機(jī)構(gòu)的設(shè)計(jì) 14
7.1 脫模推出機(jī)構(gòu)的設(shè)計(jì)原則 14
7.2 推出機(jī)構(gòu)的設(shè)計(jì) 15
7.2.1 脫模力的計(jì)算 15
7.2.2 確定頂出方式及頂桿位置 15
7.2.3 推桿強(qiáng)度計(jì)算 15
8. 側(cè)抽芯機(jī)構(gòu)的設(shè)計(jì) 16
8.1 滑動(dòng)堵頭與滑動(dòng)型芯設(shè)計(jì) 16
8.2 斜導(dǎo)柱長(zhǎng)度的計(jì)算 17
9. 溫度調(diào)節(jié)系統(tǒng) 18
9.1 冷卻系統(tǒng)的設(shè)計(jì)原則 18
9.2 冷卻介質(zhì)的選用 18
9.2.1 冷卻系統(tǒng)的粗略計(jì)算 18
10. 模架的確定 19
11. 塑件的Moldflow分析 19
11.1 有限元法介紹 19
11.2 分線(xiàn)盒模型前處理 20
11.3 分線(xiàn)盒注塑模流動(dòng)分析及改進(jìn) 21
參考文獻(xiàn) 26
外文資料 27
中文翻譯 34
致 謝 38
武漢紡織大學(xué)2011屆畢業(yè)設(shè)計(jì)論文
1 緒論
塑件的生產(chǎn)成本包括原料費(fèi)、水電費(fèi)、人工費(fèi)、 模具費(fèi)等,其中原料費(fèi)、水電費(fèi)、人工等與生產(chǎn)塑件的數(shù)量成正比關(guān)系,模具費(fèi)分?jǐn)偟矫總€(gè)塑件的費(fèi)用與生產(chǎn)塑件的數(shù)量密切相關(guān),即模具生產(chǎn)塑件的數(shù)量越多,模具費(fèi)分?jǐn)偟矫總€(gè)塑件的費(fèi)用就越少,注射模設(shè)計(jì)制造周期長(zhǎng),精度要求高,價(jià)格昂貴,因此注射模適合大批量生產(chǎn),但如圖1所示分線(xiàn)盒塑件,需求量不大或在一段時(shí)間內(nèi)需求量不大,而規(guī)格、型號(hào)較多,如每一個(gè)規(guī)格、型號(hào)塑件都做1副模具,模具數(shù)量多,生產(chǎn)周期長(zhǎng),制造費(fèi)用高,成本高, 缺乏市場(chǎng)競(jìng)爭(zhēng)力?,F(xiàn)設(shè)計(jì) 1副一模多用的注射模,只需更換模具中的幾個(gè)關(guān)鍵零件就可生產(chǎn)多種規(guī)格塑件,成本大幅度減少,提高了市場(chǎng)競(jìng)爭(zhēng)力,企業(yè)經(jīng)濟(jì)效益也顯著提高。
2 塑件工藝分析
2.1 塑件分析
分線(xiàn)盒主要用于通訊、網(wǎng)絡(luò)等的分線(xiàn)管接線(xiàn)。從使用要求看,分線(xiàn)盒具有高電絕緣性和難燃、阻燃特性,防塵防潮,因此分線(xiàn)盒塑料選用硬聚氯乙烯(HPVC)。HPVC成型性能好,使用性能穩(wěn)定,貨源充足,價(jià)格合理,收縮率 0.6%~1.5%,溢料值 0.06mm,可滿(mǎn)足使用和成型要求。 圖 (a)為四通分線(xiàn)盒,有 4個(gè)通路口, mm通路口與分線(xiàn)管相配,64±0.2mm尺寸與分線(xiàn)盒蓋相配,這2組尺寸精度要求較高,其余尺寸精度只作一般要求。塑件上4個(gè)通路mm與分線(xiàn)盒的主分型面垂直,為外側(cè)凸起和側(cè)孔,為便于開(kāi)模取件必須設(shè)計(jì)側(cè)抽芯結(jié)構(gòu),而且為節(jié)約制造成本,側(cè)抽芯的結(jié)構(gòu)必須實(shí)現(xiàn)一模多用,只需要更換其中的部分零件就可以生產(chǎn)5種不同規(guī)格的制品。要生產(chǎn)的制件如圖2-1所示
圖2-1 分線(xiàn)盒二維圖圖2-2 分線(xiàn)盒三維圖
2.2 塑件的原材料分析及工藝參數(shù)
2.2.1 塑件的原材料分析
塑件的原材料采用硬聚氯乙烯(HPVC)屬熱塑性塑料。從實(shí)用性能上看,有較好的抗拉、抗彎、抗壓抗沖擊性能,有較好的電器絕緣性能。但熱穩(wěn)定性較差,長(zhǎng)時(shí)間加熱會(huì)導(dǎo)致分解,放出氯化氫氣體。從成型性能上看,易放出氯化氫,必須加入穩(wěn)定劑和潤(rùn)滑劑,并嚴(yán)格控制溫度及熔料的滯留時(shí)間,模具澆注系統(tǒng)應(yīng)粗短,進(jìn)料口截面易大,模具應(yīng)有冷卻裝置。
a) 尺寸精度分析
根據(jù)任務(wù)書(shū)的要求:該零件工作尺寸的制造精度為IT9級(jí)。塑件最大壁厚為3mm,最小為2mm,壁差為1mm,較均勻,有利于零件成型。從課本《塑料成型加工與模具》表4-2得:壁厚為2mm.
b) 表面質(zhì)量分析
該零件的表面除要求沒(méi)有缺陷、毛刺、內(nèi)部不得有導(dǎo)電雜質(zhì)外,沒(méi)有特別的表面質(zhì)量要求,故比較容易實(shí)現(xiàn)。
2.3 HPVC的注射工藝參數(shù)
(a)、注射機(jī):螺桿式
(b)、螺桿轉(zhuǎn)速(r/min):15~25
(c)、料筒溫度(℃): 后段:150~160
中段:165~170
前段:170~180
(d)、噴嘴溫度(℃): 180~200 ;噴嘴形式:通用型。
(e)、模具溫度(℃): 30~60
(f)、注射溫度(℃): 190~215
(g)、注射壓力(MPA):80~130
(h)、保壓壓力(MPA):40~60
(i)、成型時(shí)間(S):注射2~5;保壓15~40;成型周期40~90;冷卻15~40。
2.4 HPVC的主要性能指標(biāo)
表2-1 HPVC的主要性能指標(biāo)
密度(g/cm^3)
1.35---1.45
屈服強(qiáng)度/Map
35---50
質(zhì)量體積(cm^/g)
0.69---0.74
抗拉強(qiáng)度/Map
35---50
吸水率24h/%
0.07---0.4
拉彎彈性模量/Gap
2.4---4.2
玻璃化溫度/℃
87
抗彎強(qiáng)度/Map
≥90
熔點(diǎn)/℃
160---212
彎曲彈性模量/Map
0.05---0.09
計(jì)算收縮率/%
抗彎強(qiáng)度/Map
比熱容/(j/(kg*k))
1260
抗剪強(qiáng)度/Map
3 注塑機(jī)的選型
注射機(jī)為塑料注射成型所用的主要裝備,因此設(shè)計(jì)注射模是應(yīng)該詳細(xì)了解注射機(jī)的技術(shù)規(guī)范,才能設(shè)計(jì)出符合要求的模具。注射機(jī)規(guī)范的確定是根據(jù)素件的大小及型腔的數(shù)目和排列方式,再確定模具結(jié)構(gòu)形式及初步估算外形尺寸的前提下,設(shè)計(jì)人員應(yīng)對(duì)模具所需的注射量、鎖模力、注射壓力、拉桿間距、最大和最小模具厚度、推出形式、推出位置、推出形程,開(kāi)模距離等進(jìn)行計(jì)算。根據(jù)這些參數(shù)選擇一臺(tái)和模具相配的注射機(jī)。
3.1 所需注射量的計(jì)算
3.1.1 塑件質(zhì)量、體積計(jì)算
根據(jù)任務(wù)書(shū)提供的塑件圖樣,建立塑件模型并對(duì)此模型分析得:
塑件體積 :
塑件質(zhì)量:
(1) 澆注系統(tǒng)凝料體積的初步計(jì)算
可按塑件體積的0.6倍計(jì)算,由于該模具采用一模一腔,所以澆注系統(tǒng)凝料體積為:
(2) 該模具一次注射所需塑料
體積: (3-1)
質(zhì)量: (3-2)
3.2 注射機(jī)型號(hào)的選擇
近年來(lái)我國(guó)引進(jìn)注射機(jī)型號(hào)很多,國(guó)內(nèi)注射機(jī)生產(chǎn)廠的新機(jī)型也日益增多。掌控使用設(shè)備的技術(shù)參數(shù)是注射模型設(shè)計(jì)和生產(chǎn)所必需的技術(shù)準(zhǔn)備。在設(shè)計(jì)模具時(shí)。最好查閱注射機(jī)生產(chǎn)廠家提供的《注射機(jī)使用說(shuō)明書(shū)》上標(biāo)明的技術(shù)參數(shù)。
根據(jù)以上初步計(jì)算初步選定型號(hào)為XS—ZY—250型臥式注射機(jī)。
表3-1 注射機(jī)的主要技術(shù)參數(shù)
螺桿直徑/mm
50
拉桿內(nèi)間距/mm
448x370
螺桿長(zhǎng)徑比
最大模具厚度/mm
350
理論容量/cm^3
250
最小模具厚度/mm
250
注射質(zhì)量/g
推出行程/mm
注射速率(g/s)
頂出力/ken
塑化能力(g/s)
頂出桿根數(shù)
額定注射壓力/Mpa
1300
定位孔直徑/mm
螺桿轉(zhuǎn)速/(r/min)
頂出中心孔直徑/mm
40
鎖模力/ken
180
噴嘴球半徑SR/mm
18
開(kāi)模行程/mm
350
噴嘴孔半徑/mm
4
3.3 型腔數(shù)量及注射機(jī)有關(guān)工藝參數(shù)的校核
3.1.1 型腔數(shù)量的校核
(1)由注射機(jī)額定注射量確定型腔數(shù)量
(3-1)
——注射機(jī)額定注射量
——澆注系統(tǒng)工程凝料量
——單個(gè)塑料的容積或質(zhì)量
(2)按注射機(jī)額定鎖模力進(jìn)行校核
(3-2)
式中: -注射機(jī)的額定鎖模力,N
-單個(gè)塑件在模具分型面上的投影面積,
-澆注系統(tǒng)在模具分型面上的投影面積,
-塑料熔體對(duì)型腔的成型壓力,MPa(其大小一般是注射壓力的80%)
3.1.2 注射機(jī)工藝參數(shù)的校核
(1)注射量校核
注射量以容積表示,最大注射容積為
(3-3)
式中:-模具型腔和流道的最大容積()
-指定型號(hào)和規(guī)格的注射機(jī)注射量容積()
-注射系數(shù),取0.75
倘若實(shí)際注射量過(guò)小,注射機(jī)的塑化能力得不到發(fā)揮塑料在料桶中停留時(shí)間過(guò)長(zhǎng),所以最小注射量容積:.故每次注射的實(shí)際注射量容積V′應(yīng)滿(mǎn)足,而V′≈44,符合要求。
(2)最大注射壓力校核
注射機(jī)的額定注射壓力即為該機(jī)器的最高壓力,應(yīng)該大于注射成型時(shí)所需調(diào)用的注射壓力P
即 (3-4)
式中: -安全系數(shù),常取 =1.25-1.4
實(shí)際生產(chǎn)中,該塑件成型時(shí)所需注射壓力為70Mpa-100Mpa,代值計(jì)算,符合要求。
3.1.3 安裝尺寸校核
(1) 主流道小端直徑D大于注射機(jī)噴嘴d,通常為
D=d+ (0.5--1) mm
對(duì)于該模具d=4mm,取D=4.5mm,符合要求
(2) 主流道入口的凹面半徑SR0應(yīng)大于注射機(jī)噴嘴球半徑SR,通常為
SR0=SR+(1-2mm)
對(duì)于該模具SR=12mm,取SR0=13mm,符合要求。
(3) 定位圈尺寸
注射機(jī)定位孔尺寸為{H7},定位圈尺寸取{f6},兩者之間呈較松動(dòng)的間隙配合,符合要求。
(4)最大與最小模具厚度
模具厚度應(yīng)滿(mǎn)足Hmin < H < Hmax
式中Hmin=200mm,Hmax=300mm
而該套模具厚度H=90+32+50+63=235mm,符合要求。
3.1.4 開(kāi)模行程和推出機(jī)構(gòu)的校核
開(kāi)模行程的校核
H≥H1+H2 (3-5)
H≥H1+H2+(5-10)mm
式中 H—注射機(jī)動(dòng)模板的開(kāi)模行程(mm)
H1—塑件推出行程
H2=25+32+60+(5-10)=112—117(mm)
代值計(jì)算,符合要求。
該注射機(jī)推出行程滿(mǎn)足要求
3.1.5 模具尺寸與拉桿內(nèi)間距校核
該套模具模架的外形尺寸為300mmx285mm,而注射機(jī)拉桿間距為448mm x 370mm,因370mm 〉300mm,符合要求。
注:對(duì)于上面的2)、3)、4)、5)的校核內(nèi)容與后面的模具結(jié)構(gòu)設(shè)計(jì)交叉進(jìn)行的,但為了整體形式與內(nèi)容的統(tǒng)一,所以將該部分內(nèi)容放于此。
4 分型面的選擇
在塑件設(shè)計(jì)階段,就應(yīng)考慮成型時(shí)分型面的形狀位置,否則無(wú)法用模具成型。在模具設(shè)計(jì)階段,應(yīng)首先確定分型面的位置,然后才選擇模具的結(jié)構(gòu)。分型面設(shè)計(jì)是否合理,對(duì)塑件質(zhì)量、工藝操作難易程度和模具的設(shè)計(jì)制造都有很大影響。因此,分型面的選擇是注射設(shè)計(jì)中的一個(gè)關(guān)鍵因素。有利于保障塑件的外觀質(zhì)量
(1) 分型面應(yīng)選則在塑件的最大截面處
(2) 盡可能使塑件留在動(dòng)模一側(cè)
(3) 有利于保障塑件的尺寸精度
(4) 盡可能滿(mǎn)足塑件的使用要求
(5) 盡量減少塑件在和模方向上的投影面積
(6) 長(zhǎng)型芯應(yīng)置于開(kāi)模方向
(7) 有利于排氣
(8) 有利于簡(jiǎn)化模具結(jié)構(gòu)
該塑件在進(jìn)行塑件設(shè)計(jì)時(shí)已經(jīng)充分考慮了上述原則,同時(shí)從所提供的塑件圖樣上可以看出¢64的圓桶四周有四個(gè)外經(jīng)¢26的 圓環(huán)。根據(jù)其特點(diǎn)和表面質(zhì)量要求,采用平面分型面,這樣有利于塑件脫模,也易于型芯和型腔的加工。其位置和形狀如圖4-1所示
圖4-1 分型面結(jié)構(gòu)及形式
4.1 確定型腔數(shù)量和排列方式
一般來(lái)說(shuō),大中型塑件和精度要求的小型塑件優(yōu)先采用一模一腔的結(jié)構(gòu)形式,但對(duì)于精度要求不高的小型塑件(沒(méi)有配合精度要求)形狀具有一定的特殊性,又是小批量生產(chǎn)時(shí),可以采用一模一腔的結(jié)構(gòu)。故由此初步擬訂一模一腔,如圖4-2所示
圖4-2 型腔圖
5 澆注系統(tǒng)設(shè)計(jì)
澆注系統(tǒng)是引導(dǎo)塑料熔體從注射機(jī)噴嘴到模具型腔的進(jìn)料通道,具有傳質(zhì)、傳壓和傳熱的功能,對(duì)塑件質(zhì)量影響很大。它分為普通流道澆注系統(tǒng)和熱流道澆注系統(tǒng)。
該模具采用普通流道澆注系統(tǒng),采用點(diǎn)澆口,雙分型面。
5.1 主流道的設(shè)計(jì)
主流道通常位于模具中心塑料熔體的入口處,它將注射機(jī)噴嘴處的熔體導(dǎo)入分流道或型腔中。主流道的形狀為圓錐形,以便于熔體的流動(dòng)和開(kāi)模時(shí)主流道凝料的順利拔出。
主流道尺寸
(1) 主流道小端直徑D=注射機(jī)噴嘴直徑+(0.5-1)
=4+(05-1),取D=4.5mm
(2)主流道球面半徑 SR0=注射機(jī)噴嘴球半徑+(1-2)
=12+(1-2),取SR0=13mm
(3)球面配合高度h=3mm-5mm,取h=3mm
(4)主流道長(zhǎng)度盡量小于60mm,由標(biāo)注模架結(jié)合該模具結(jié)構(gòu),取L=40mm。
5.2 主流道襯套的形式
主流道小端入口處與注射機(jī)噴嘴反復(fù)接觸,屬易損件,對(duì)材料要求較嚴(yán),因而模具主流道部分常設(shè)計(jì)成可拆卸更換的主流道襯套形式即澆口套,以便有效的選用優(yōu)質(zhì)剛材單獨(dú)進(jìn)行加工和熱處理,常采用碳素工具鋼,如T8A、T10A、等,熱處理硬度為50HRC-55HRC,如圖5-1所示
圖5-1 主流道襯套
5.3 澆口的結(jié)構(gòu)形式
澆口的設(shè)計(jì)原則:
(1)澆口尺寸及位置選擇應(yīng)避免熔體破裂而產(chǎn)生噴射和蠕動(dòng);
(2)澆口位置應(yīng)有利于流動(dòng)、排氣和補(bǔ)料;
(3)澆口位置應(yīng)使流程最短,料流變向量少,并防止型芯變形;
(4)澆口位置及數(shù)量應(yīng)有利于減少熔接痕和增加熔接強(qiáng)度。
圖5-2 澆口的位置與形式
5.4 澆注系統(tǒng)的平衡
對(duì)于該模具,從塑件圖上可以刊出,該塑件是對(duì)稱(chēng)結(jié)構(gòu),采用點(diǎn)澆口,澆注系統(tǒng)顯然是平衡的。
流動(dòng)比的校核:
(5-1)
式中-流動(dòng)距離比
-流動(dòng)路徑各段長(zhǎng)度,mm
-流動(dòng)路徑各段的型腔厚度,mm
n-流動(dòng)路徑的總段數(shù)
因?yàn)橛绊懥鲃?dòng)比的因素主要是塑料的流動(dòng)比,根據(jù)注塑壓力確定HPVC的流動(dòng)性中等,其允許流動(dòng)比{ }=130-170,所以符合要求。
6 成型零件的結(jié)構(gòu)設(shè)計(jì)和尺寸設(shè)計(jì)
6.1 成型零部件的結(jié)構(gòu)形式
6.1.1 凸凹模的結(jié)構(gòu)設(shè)計(jì)
中小型凹模宜采用整體式凹模,本設(shè)計(jì)采用整體式凹模,這是因?yàn)榘寄0搴穸葹?7mm,比較薄,模板尺寸也較小,采用整體式并不會(huì)浪費(fèi)材料,整體式凹模的優(yōu)點(diǎn)是:強(qiáng)度大,塑件上不會(huì)產(chǎn)生拼模縫痕跡。凸模的裝配形式有模體與底板一體式,底板裝配式,螺釘配合底板式。本模具屬于小型模具,為了減少模具零件的加工量和便于加工,采用過(guò)渡配合(H7/m6)將型芯壓入模具。
6.1.2 成型零部件的工作尺寸的計(jì)算
成型零部件中與塑件接觸并決定塑件幾何形狀的各處尺寸,稱(chēng)為工作尺寸,它包括型腔深度與型芯高度尺寸、型腔和型芯徑向尺寸、成型零件中心距。根據(jù)與塑件熔體或塑件之間產(chǎn)生摩擦磨損之后尺寸的變化趨勢(shì),可將工作尺寸分為三類(lèi):1) 孔類(lèi)尺寸(A類(lèi));2)軸類(lèi)尺寸(C類(lèi));3)中心距類(lèi)尺寸(C類(lèi)).任何制品都有一定的尺寸要求,制品成型后的實(shí)際尺寸與基本尺寸之間的誤差叫制品的尺寸偏差。引起制品產(chǎn)生尺寸偏差的原因很多,據(jù)目前的生產(chǎn)經(jīng)驗(yàn)來(lái)說(shuō),主要的原因是來(lái)自塑件的收縮率、成型零部件的制造偏差及其在使用過(guò)程中的磨損等三方面。
生產(chǎn)中一般根據(jù)制品尺寸允許的公差來(lái)確定成型零部件的制造偏差及其磨損量,它們關(guān)系如下:
; 。 (5-2)
利用平均收縮率來(lái)計(jì)算,平均收縮率(Scp)是塑件的最大收縮率(Scpmax)與最小收縮率(Scpmin)的和的一半,即:
Scp=(Scpmax + Scpmin)/2
=0.6%+1.5%/2
=0.105% (5-3)
型腔工作部分尺寸:
型腔徑向尺寸: Lm=〔〔1+s〕Ls-x△〕 (5-4)
型腔深度尺寸:Hm=〔〔1+s〕Ls- x△〕 (5-5)
型芯徑向尺寸:lm=〔〔1+s〕ls+ x△〕 (5-6)
型芯深度尺寸:hm=〔〔1+s〕ls+ x△〕 (5-7)
型芯高度尺寸:hm=〔〔1+s〕hs+ x△〕 (5-8)
中心距尺寸: (5-9)
式中:Ls-形徑向基本尺寸的最大尺寸(mm)
Ls-塑件內(nèi)形徑向基本尺寸的最小尺寸(mm)
Hm-塑件外形高度基本尺寸的最大尺寸(mm)
hm-塑件內(nèi)形深度基本尺寸的最小尺寸(mm)
Cm-塑件中心距基本尺寸的平均尺寸(mm)
x-修正系數(shù),取0.5-0.75
△-塑件公差(mm)
各工作部位尺寸計(jì)算結(jié)果如圖6-1所示,通常制品中1mm和小于1mm并帶有大于0.05公差的部位以及2mm和小于2mm并帶有大于0.1mm公差的部位不需要進(jìn)行收縮率計(jì)算
圖6-1 分線(xiàn)盒各工作部分的尺寸
6.1.3 型腔零件強(qiáng)度、剛度的校核
對(duì)于該套模具選整體式型腔。型腔的強(qiáng)度、剛度校核如下
型腔側(cè)壁厚度的校核
按強(qiáng)度校核:
(6-1)符合要求。
式中 r-凹模內(nèi)半徑(mm),平均為32mm
p-模具型腔內(nèi)最大的塑料熔體壓力Mpa,一般為30Mpa-50Mpa,取50Mpa
-模具強(qiáng)度計(jì)算的許用應(yīng)力,預(yù)硬化模具鋼具體值為=300 Mpa
按剛度校核:
(6-2)
式中r-凹模內(nèi)半徑(mm),平均為32mm
P-模具型腔內(nèi)最大的塑料熔體壓力Mpa,一般為30Mpa-50Mpa,取50Mpa
E-模具鋼材的彈性模量,預(yù)硬化塑料模具鋼E=Mpa
-模具鋼材的泊松比,取0.25
-模具剛度計(jì)算許用變形量
=25i=mm
帶入計(jì)算R=32.47<55,符合要求
型腔底板厚度的校核
按強(qiáng)度校核:
(6-3)
符合要求。
式中各符號(hào)意義與取值同前
按剛度校核:
(6-4)
符合要求。
式中各符號(hào)意義與取值同前。
7 脫模機(jī)構(gòu)的設(shè)計(jì)
注射成型每一循環(huán)中,塑件必須準(zhǔn)確無(wú)誤的從模具的凹模中或型芯中脫出,使塑件從凸?;虬寄I厦摮龅臋C(jī)構(gòu)稱(chēng)為脫模機(jī)構(gòu),或推出機(jī)構(gòu)。
7.1 脫模推出機(jī)構(gòu)的設(shè)計(jì)原則
1) 推出機(jī)構(gòu)應(yīng)盡量設(shè)置在動(dòng)模一側(cè)
2) 保證塑件不因推出而變形損壞
3) 機(jī)構(gòu)簡(jiǎn)單,動(dòng)作可靠
4) 良好的塑件外觀
5) 合模時(shí)的準(zhǔn)確復(fù)出
7.2 推出機(jī)構(gòu)的設(shè)計(jì)
1) 脫模力的計(jì)算應(yīng)考慮的方面:
2) 由收縮包緊力造成的制品與型芯的摩擦阻力,該值應(yīng)有實(shí)驗(yàn)確定。
3) 由大氣壓力造成的阻力。
4) 由塑件的黏附力造成的脫模阻力。
5) 推出機(jī)構(gòu)運(yùn)動(dòng)摩擦阻力。
7.2.1 脫模力的計(jì)算
由于制件為圓環(huán)形截面(t/d<0.05),則
(7-1)
式中—無(wú)量綱系數(shù),隨f和而異;值還可從表8-3中選取
t/d—壁厚與直徑之比
—圓環(huán)塑件的壁厚,mm
S—塑料平均成型收縮率
E—塑料的彈性模量,MPa
L—塑件對(duì)型芯的包容長(zhǎng)度,mm
f—塑件與型芯之間的摩擦因數(shù)
—模具型芯的脫模斜度
—塑料的泊松比
A—盲孔塑件型芯在垂直于脫模方向上的投影面積,,通孔制件的A等于零。
F = 10.1KN
7.2.2 確定頂出方式及頂桿位置
根據(jù)制品結(jié)構(gòu)特點(diǎn),確定在制品的四周邊緣對(duì)稱(chēng)設(shè)置四根普通的圓頂桿,普通圓形頂桿按標(biāo)準(zhǔn)模架Z41,直徑6.0選用。
7.2.3 推桿強(qiáng)度計(jì)算
圓形推桿直徑d
(7-2)
式中d-圓形推桿直徑(mm)
K-推桿長(zhǎng)度系數(shù)≈0.7
L-推桿長(zhǎng)度(mm)
n-推桿數(shù)量
E-推桿材料的彈性模量(N/cm^2)鋼E=
d≈4取d=6mm
3.推桿的應(yīng)力校核
(7-3)
式中-推桿應(yīng)力()
-推桿鋼材的屈服極限強(qiáng)度(N/cm)一般中碳鋼=3200合金結(jié)構(gòu)鋼=4200
≈8952.25
﹤滿(mǎn)足要求
8 側(cè)抽芯機(jī)構(gòu)的設(shè)計(jì)
8.1 滑動(dòng)堵頭與滑動(dòng)型芯設(shè)計(jì)
分線(xiàn)盒注射模型腔布置為對(duì)稱(chēng)結(jié)構(gòu),滑動(dòng)堵頭、滑動(dòng)型芯需根據(jù)分線(xiàn)盒的結(jié)構(gòu)進(jìn)行更換和組合,滑動(dòng)堵頭、滑動(dòng)型芯采用較耐磨的T10A淬火處理,以保證足夠的工作壽命;滑動(dòng)堵頭、滑動(dòng)型芯尺寸及形狀精度要求較高,以保證安裝方便,運(yùn)動(dòng)順滑?;瑒?dòng)堵頭、滑動(dòng)型芯結(jié)構(gòu)如圖8-1所示。
(a)滑動(dòng)堵頭 (b)滑動(dòng)型芯
圖8-1滑動(dòng)堵頭與滑動(dòng)型芯結(jié)構(gòu)
8.2 斜導(dǎo)柱長(zhǎng)度的計(jì)算
側(cè)型芯滑塊抽芯方向與開(kāi)合模方向垂直,斜導(dǎo)柱的工作長(zhǎng)度L與抽芯距及傾斜角有關(guān),即L=S/sinɑ
斜導(dǎo)柱總長(zhǎng)度為:
Lz=L1+L2+L3+L4+L5 (8-1)
=d2tanɑ/2+h/cosɑ+dtanɑ/2+s/sinɑ+(5-10)mm
式中Lz-斜導(dǎo)柱總長(zhǎng)度
d2-斜導(dǎo)柱固定部分大端直徑
h-斜導(dǎo)柱固定板厚度
d-斜導(dǎo)柱工作部分的直徑
s-抽芯距
Lz=90mm
斜導(dǎo)柱直徑計(jì)算
側(cè)向抽拔力Ft=AP(ucosɑ-sinɑ) (8-2)
式中A-塑件包緊側(cè)型芯的側(cè)面積
P-塑件收縮率對(duì)型芯單位面積的正壓力塑件在模內(nèi)冷卻P=0.8x10^7-1.2x10^7(Pa)
u-塑件對(duì)鋼的摩擦系數(shù)
ɑ-斜導(dǎo)柱傾斜角ɑ=20℃
Ft=8.46KN
因?yàn)镠w=15mm
Hw為側(cè)型芯滑塊受到脫模力的作用線(xiàn)與斜導(dǎo)柱中心線(xiàn)交點(diǎn)到斜導(dǎo)柱固定板的距離。
由于其直徑計(jì)算比較復(fù)雜,有時(shí)為了方便,也可以用查表的方法確定斜導(dǎo)柱的直徑。先按已求得的抽拔力Ft和選定的斜導(dǎo)柱傾斜角ɑ查有關(guān)資料得出斜導(dǎo)柱的直徑d:
d=16mm
9 溫度調(diào)節(jié)系統(tǒng)
9.1 冷卻系統(tǒng)的設(shè)計(jì)原則
(1)冷卻系統(tǒng)的布置應(yīng)先于脫模機(jī)構(gòu)
(2)合理地確定冷卻管道的直徑中心距以及與型腔壁的距離
(3)降低進(jìn)出水的溫度差,普通模具的進(jìn)出水溫差不應(yīng)超過(guò)5℃
(4)澆口處應(yīng)加強(qiáng)冷卻
(5)應(yīng)避免將冷卻水道開(kāi)設(shè)在塑件熔接痕處
(6)冷卻水路應(yīng)便于加工和清理。
9.2 冷卻介質(zhì)的選用
HPVC的成型溫度的模具溫度分別為190℃-215℃、20℃-60℃用溫水對(duì)模具進(jìn)行冷卻。冷卻介質(zhì)有冷卻水和壓縮空氣,但用冷卻水較多,因?yàn)樗臒崛萘看?,傳熱系?shù)大、成本低。用水冷卻,即在模具型腔周?chē)騼?nèi)部開(kāi)設(shè)冷卻水道。
9.2.1 冷卻系統(tǒng)的粗略計(jì)算
冷卻水的體積流量
(9-1)
式中p-冷卻水的密度,為
-冷卻水的比熱容,為4.187kJ/(kg·℃)
-冷卻水出口溫度取25℃
-冷卻水入口溫度取20℃
冷卻管道直徑
當(dāng)求出冷卻水的體積流量后,便可根據(jù)冷卻水處于湍流狀態(tài)下的流速v與管道直徑的關(guān)系(見(jiàn)課本P211的表10-1),確定模具冷卻水管道的直徑d。
取d=8mm.
模具應(yīng)開(kāi)設(shè)的冷卻管道的孔數(shù)為:
(9-2)
10 模架的確定
根據(jù)以上分析,計(jì)算以及型腔尺寸位置可確定定模架的結(jié)構(gòu)形式和規(guī)格。選用結(jié)構(gòu)形式為A2型、模架尺寸為300mmx285mm的標(biāo)準(zhǔn)模架可符合要求。
模具上所有的螺釘盡量采用內(nèi)六角螺釘;模具外表面盡量不要有突出部分;模具外表面應(yīng)光潔,加防銹油。兩模板之間應(yīng)有分模間隙,即在裝配、調(diào)試、維修過(guò)程中可以方便地分開(kāi)兩模板。
11 塑件的Moldflow分析
11.1 有限元法介紹
Moldflow軟件的原理是有限元法,有限元法是力學(xué)、計(jì)算方法和計(jì)算機(jī)技術(shù)相結(jié)合的產(chǎn)物,由于它在解決工程技術(shù)問(wèn)題時(shí)的靈活性、快速及有效性,發(fā)展非常神速,其解題范圍包括了各個(gè)領(lǐng)域(固體力學(xué)、流體場(chǎng)、電磁場(chǎng)、溫度場(chǎng)、聲場(chǎng))的數(shù)理方程;其計(jì)算機(jī)程序幾乎能求解數(shù)理方程中的各類(lèi)問(wèn)題,是工程技術(shù)人員必備工具,是力學(xué)、機(jī)械、土木工程、水力等專(zhuān)業(yè)的學(xué)生的必修課。有限元法是求解復(fù)雜工程問(wèn)題的一種近似數(shù)值解法,現(xiàn)已廣泛應(yīng)用到力學(xué)、熱學(xué)、電磁學(xué)等各個(gè)學(xué)科,主要分析工作環(huán)境下物體的線(xiàn)性和非線(xiàn)性靜動(dòng)態(tài)特性等性能。
有限元法求解問(wèn)題的基本過(guò)程主要包括:分析對(duì)象的離散化,有限元求解,計(jì)算結(jié)果的處理三部分。曾經(jīng)有人做過(guò)統(tǒng)計(jì):三個(gè)階段所用的時(shí)間分別占總時(shí)間的40%~50%、5%及50%~55%。也就是說(shuō),當(dāng)利用有限元分析對(duì)象時(shí),主要時(shí)間是用于對(duì)象的離散及結(jié)果的處理。如果采用人工方法離散對(duì)象和處理計(jì)算結(jié)果,勢(shì)必費(fèi)力、費(fèi)時(shí)且極易出錯(cuò),尤其當(dāng)分析模型復(fù)雜時(shí),采用人工方法甚至很難進(jìn)行,這將嚴(yán)重影響高級(jí)有限元分析程序的推廣和使用。因此,開(kāi)展自動(dòng)離散對(duì)象及結(jié)果的計(jì)算機(jī)可視化顯示的研究是一項(xiàng)重要而緊迫的任務(wù)。
有限元分析的基本步驟和幾個(gè)問(wèn)題:
離散化 :(1)單元怎樣劃分,編排單元碼和節(jié)點(diǎn)碼有什么原則;
(2)荷載如何移置。
單元分析:(1)節(jié)點(diǎn)力怎樣用節(jié)點(diǎn)位移表示;
(2)如何建立以節(jié)點(diǎn)位移表示的節(jié)點(diǎn)平衡 方程式;
(3)怎樣去求單元的內(nèi)力(應(yīng)力)。
整體分析:如何以最快的速度、最少的時(shí)間、最好的方案解出方程組,以得到最佳(可行精度)的結(jié)果。
11.2 分線(xiàn)盒模型前處理
(1)網(wǎng)格的劃分,處理,診斷
導(dǎo)入分線(xiàn)盒模型,并選擇網(wǎng)格類(lèi)型為表面模型,設(shè)置全局網(wǎng)格邊長(zhǎng)為10mm接著開(kāi)始劃分網(wǎng)格。劃分完成后進(jìn)行網(wǎng)格數(shù)據(jù)統(tǒng)計(jì),網(wǎng)格數(shù)量4498,無(wú)自由邊,無(wú)交叉邊,最小縱橫比1.15,最大縱橫比38.55??梢钥闯觯瑢?duì)于之后要進(jìn)行的翹曲分析,縱橫比過(guò)大,需要調(diào)整。進(jìn)行網(wǎng)格的縱橫比診斷,調(diào)整網(wǎng)格縱橫比為小于20。最后進(jìn)行網(wǎng)格配向診斷,連通性診斷,自由邊診斷等,均沒(méi)有問(wèn)題。
(2)分析類(lèi)型及材料選擇
雙擊Moldflow左邊任務(wù)欄的填充,選擇分析類(lèi)型為“澆口位置”,然后選擇材料為“PVC”牌號(hào)為87322。雙擊任務(wù)欄的“立即分析” 。
圖11-1 最佳澆口位置分析
查看分析結(jié)果,如圖11-1所示,藍(lán)色顯示的即為最佳澆口位置。
修改分析類(lèi)型為“流動(dòng)+翹曲”,為接下來(lái)的分析做準(zhǔn)備。
11.3 分線(xiàn)盒注塑模流動(dòng)分析及改進(jìn)
進(jìn)行工藝參數(shù)的設(shè)置:雙擊工藝設(shè)置,彈出工藝設(shè)置向?qū)А?
在冷卻設(shè)置中,設(shè)置模具表面溫度設(shè)為50;熔體溫度200,開(kāi)模時(shí)間5s,注射+保壓+冷卻時(shí)間為自動(dòng),查看頂出條件為頂出溫度93,頂出凍結(jié)百分比為100%;
在流動(dòng)設(shè)置中,參數(shù)均為自動(dòng);
在翹曲設(shè)置中,勾選分離翹曲原因復(fù)選框。
準(zhǔn)備就緒,進(jìn)行分線(xiàn)盒的“流動(dòng)+翹曲”分析。得出分析結(jié)果。首先查看分析日志,在分析日志中查出最大注塑機(jī)鎖模力為18噸;最大注射壓力為1.8MPa,充填時(shí)間為2.4s,在充填階段的1.08s,流動(dòng)速率為18.56立方cm每秒時(shí),發(fā)生速度與壓力的切換,保壓階段從2.5s開(kāi)始,在12.48s時(shí),壓力完全釋放,在32.63s保壓結(jié)束。
生成分析報(bào)告:選擇需要的分析內(nèi)容并添加生成報(bào)告,報(bào)告如下:
圖11-2 變形,不同的收縮
制品在冷卻的過(guò)程中,體積會(huì)向厚壁的中心部逐漸收縮,而造成表面凹陷。根據(jù)圖11-2的報(bào)告分析,需要改進(jìn)冷卻系統(tǒng),在四個(gè)圓筒周?chē)黾永鋮s水路或降低水溫。
圖11-3 充填時(shí)間
如圖11-3充填時(shí)間為2.5s,旋轉(zhuǎn)塑件選擇塑件上不同的點(diǎn),發(fā)現(xiàn)充填時(shí)間的差值不超過(guò)0.2s,沒(méi)有問(wèn)題。
圖11-4 氣穴
由圖11-4可看出:產(chǎn)生氣穴的位置均在分型面上或者在左右滑塊縫隙,杯口邊緣位置,易于排氣,所以沒(méi)有問(wèn)題。
圖11-5 熔接痕
熔接痕的產(chǎn)生是因?yàn)槿垠w分流匯合時(shí)因料溫下降,或因制品局部太薄,導(dǎo)致匯合處熔接不良,有痕跡或強(qiáng)度降低。從圖11-5中可以看出在4個(gè)柱體位置有明顯的熔接痕產(chǎn)生,需要改進(jìn)工藝參數(shù)。
圖11-6 鎖模力
需求的鎖模力遠(yuǎn)小于注塑機(jī)的最大鎖模力,所以可行。
根據(jù)以上報(bào)告的參數(shù)分析可制定優(yōu)化方案:加長(zhǎng)滑塊處冷卻水道,使不同的冷卻產(chǎn)生的變形縮小。由于熔接痕不可避免,在調(diào)試模具時(shí),采用增大流速,溫度,壓力等方法使熔接痕不明顯。
參考文獻(xiàn)
[1] 屈華昌.塑料成型工藝與模具設(shè)計(jì)[M].北京:高等教育出版社,2001.
[2] 陳萬(wàn)林.實(shí)用塑料模設(shè)計(jì)[M].北京:機(jī)械工業(yè)出版社,1999.
[3] 劉彩英.塑料模具設(shè)計(jì)手冊(cè)[M].北京:機(jī)械工業(yè)出版社,2004.
[4] 蔣繼宏.注射模具典型結(jié)構(gòu)100例[M]. 北京:中國(guó)輕工業(yè)出版社,2006.
[5] 李海梅.注射成型與模具技術(shù)[M].北京:化學(xué)工業(yè)出版社,2003.
[6] 張如彥.塑料注射成型與模具[M]. 北京:中國(guó)鐵道出版社,2000.
[7] 張克慧.注射模具設(shè)計(jì)[M].陜西:西北工業(yè)大學(xué)出版社,2001.
[8] 馬金駿.塑料模具設(shè)計(jì)[M].北京:中國(guó)科學(xué)技術(shù)出版社,2002.
[9] 李德群.塑料成型模具設(shè)計(jì)[M].武漢:華中理工大學(xué)出版社,2003.
[10] 唐志玉.大型注射模型設(shè)計(jì)基礎(chǔ)》[M].成都:成都科技大學(xué)出版社,2004.
[11] 模具設(shè)計(jì)手冊(cè)
[12] 機(jī)械設(shè)計(jì)手冊(cè)
[13] 王文俊.實(shí)用塑料成型工藝[M].北京: 國(guó)防工業(yè)出版社,1999.
[14] 洪慎章.使用注射成型及模具設(shè)計(jì)[M].北京:機(jī)械工業(yè)出版社,2006.
[15] 屈華.塑料成型工藝與模具設(shè)計(jì)[M].北京:機(jī)械工業(yè)出版社,1998.
[16] 付建軍.模具制造工藝[M].北京:機(jī)械工業(yè)出版社,2006.
[17] 駱志斌.模具工實(shí)用技術(shù)手冊(cè)[M].南京:江蘇科技出版社,2003.
[18] Wynne H, Irene M. Current research in the conceptual design of mechanical products[J]. Computer-Aided Design, 1998 (7):377-389.
[19] G. M. Kim, P. J. Cho, C. N .Chu. Cutting force prediction of sculptured surface ball-end milling using Z-map[J]. International journal of machine tools&manufacture,2000,3(2): 277-291.
[20] Wynne H, Irene M. Current research in the conceptual design of mechanical products[J]. Computer-Aided Design, 1998,3(7):377-389.
[21] CHIN, KWAI-SANG and T. N. WONG, Knowledge-based evaluation for the conceptual[J]. Computer-Aided Design, 2003,6(7):12-22.
外文資料
Die history
1 Die position in industrial production
Mold is a high-volume products with the shape tool, is the main process of industrial production equipment.
With mold components, with high efficiency, good quality, low cost, saving energy and raw materials and a series of advantages, with the mold work-pieces possess high accuracy, high complexity, high consistency, high productivity and low consumption , other manufacturing methods can not match.,have already become an important means of industrial production and technological development, the basis of the modern industrial economy.
The development of modern industrial and technological level depends largely on the level of industrial development die, so die industry to national economic and social development will play an increasing role. March 1989 the State Council promulgated "on the current industrial policy decision points" in the mold as the machinery industry transformation sequence of the first, production and capital construction of the second sequence (after the large-scale power generation equipment and the corresponding power transmission equipment), establish tooling industry in an important position in the national economy. Since 1997, they have to mold and its processing technology and equipment included in the "current national focus on encouraging the development of industries, products and technologies catalog" and "to encourage foreign investment industry directory." Approved by the State Council, from 1997 to 2000, more than 80 professional mold factory owned 70% VAT refund of preferential policies to support mold industry. All these have fully demonstrated the development of the State Council and state departments tooling industry attention and support. Mold around the world about the current annual output of 60 billion U.S. dollars, Japan, the United States and other industrialized countries die of industrial output value of more than machine tool industry, beginning in 1997, China's industrial output value has exceeded the mold machine tool industry output
According to statistics, home appliances, toys and other light industries, nearly 90% of the parts are integrated with production of chopsticks; in aircraft, automobiles, agricultural machinery and radio industries, the proportion exceeded 60%. Such as aircraft manufacturing, the use of a certain type of fighter dies more than 30,000 units, of which the host 8000 sets, 2000 sets of engines, auxiliary 20 000 sets. From the output of view, since the 80's, the United States, Japan and other industrialized countries die industry output value has exceeded the machine tool industry, and there are still rising. Production technology, according to the International Association predicts that in 2000, the product best pieces of rough 75%, 50% will be finished mold completed; metals, plastics, ceramics, rubber, building materials and other industrial products, most of the mold will be completed in more than 50% metal plates, more than 80% of all plastic products, especially through the mold into.
2 The historical development of mold
The emergence of mold can be traced back thousands of years ago, pottery and bronze foundry, but the large-scale use is with the rise of modern industry and developed.
The 19th century, with the arms industry (gun's shell), watch industry, radio industry, dies are widely used. After World War II, with the rapid development of world economy, it became a mass production of household appliances, automobiles, electronic equipment, cameras, watches and other parts the best way. From a global perspective, when the United States in the forefront of stamping technology - many die of advanced technologies, such as simple mold, high efficiency, mold, die and stamping the high life automation, mostly originated in the United States; and Switzerland, fine blanking, cold in Germany extrusion technology, plastic processing of the Soviet Union are at the world advanced.50's, mold industry focus is based on subscriber demand, production can meet the product requirements of the mold. Multi-die design rule of thumb, reference has been drawing and perceptual knowledge, on the design of mold parts of a lack of real understanding of function. From 1955 to 1965, is the
收藏