多孔塑料罩注塑模具設(shè)計(jì)(含全套CAD圖紙)
多孔塑料罩注塑模具設(shè)計(jì)(含全套CAD圖紙),多孔,塑料,注塑,模具設(shè)計(jì),全套,cad,圖紙
附件1:外文資料翻譯譯文微型模具成型的熱量和擠壓控制 在這篇文章中,我們?yōu)榱擞行У貜?fù)制出該微型模具產(chǎn)品的微小結(jié)構(gòu),將一個(gè)擠壓機(jī)器和一個(gè)小核心傳感器組合起來(lái),構(gòu)建一個(gè)注射模具的擠壓系統(tǒng)。在一些重要的部位,由一個(gè)壓力裝置,它作為原動(dòng)力,驅(qū)動(dòng)中心模具工作。舉例說(shuō)吧,在注射以后,模腔中的壓力會(huì)從二十兆帕上升到三十四兆帕。那些小小的感應(yīng)器形成感受到壓力,那些周?chē)难b置和熱敏傳感器,排列在洞腔的同圍。我們可以根據(jù)這些信號(hào)推測(cè)里面狀況朝著有利的方向發(fā)展。為了評(píng)估該注射系統(tǒng),我們做了一個(gè)厚度為1lm角度為140 三角凹朝槽 來(lái)進(jìn)行工作。說(shuō)明大部分的醫(yī)療信息設(shè)備都有一個(gè)基礎(chǔ)工作部分,另外還有一些輔助部件來(lái)完成某種特定的功能。模具成型技術(shù) 在現(xiàn)實(shí)中廣泛應(yīng)用,而且在大批量生產(chǎn)中多有應(yīng)用,這篇文章即是研究成型過(guò)程在傳統(tǒng)的成型壓力系統(tǒng)中,其為系統(tǒng)提供很大的壓力差,這種特點(diǎn)為模具成型過(guò)程提供了很好的動(dòng)力源.然而,傳統(tǒng)的成型過(guò)程在注射成型的過(guò)程中,特別是在微型模具的成型過(guò)程中,有兩個(gè)很明顯的問(wèn)題.首先,在用單模腔成型微小結(jié)構(gòu)的模具時(shí),不同的溫度和硬度會(huì)引起不一致的成型壓力.一般來(lái)說(shuō),模腔中心的溫度越高,中心周?chē)臏囟纫矔?huì)越高.其次,即使通過(guò)冷卻和控制壓力的方法來(lái)展平那些不平的區(qū)域,但是通過(guò)檢測(cè)發(fā)現(xiàn),熱流量和壓力仍是高于成型微型模具工作時(shí)所規(guī)定的壓力,而且腔內(nèi)的這種情況很不好控制,這樣以來(lái)就只好通來(lái)偵測(cè)熱流面不是溫度來(lái)控制型腔中各種成型條件.這篇文章的作者,也就是該機(jī)器的設(shè)計(jì)者,他通過(guò)在模具重要部位安放一個(gè)叫做模具核心擠壓機(jī)的部件來(lái)及時(shí)了解并控制模腔內(nèi)成型的具體情況。這個(gè)部件配備有特殊裝置來(lái)控制模腔內(nèi)的壓力、溫度,并反饋回到顯示裝置上。這篇文章就向我們?cè)敿?xì)地闡述了這種機(jī)器的模型。模具成型的壓力系統(tǒng)設(shè)計(jì)如圖1所示,該結(jié)構(gòu)為我們常用的模具結(jié)構(gòu)圖。首先,我們描述一下裝備有piezo設(shè)備的模具成型壓力機(jī)。我們用的pie20設(shè)備有一個(gè)最大厚度為13LM的裝置,而且可以產(chǎn)生一個(gè)最大值為6KN的壓力。因此,該注射壓力系統(tǒng)所能產(chǎn)生的壓力在06KN之間,注射機(jī)的壓力系統(tǒng)有一個(gè)壓力設(shè)備,該裝置有一個(gè)特置的中心軸,并與一個(gè)傳感反饋裝置連在一塊。這個(gè)壓力裝置是圓柱形的,直徑為25mm,高度為54mm,它的溫度約在20和120之間。壓力傳動(dòng)裝置的設(shè)計(jì)是對(duì)稱(chēng)的,它把動(dòng)力和運(yùn)動(dòng)從壓力裝置上以一定的規(guī)律和方式傳出去,這個(gè)圓柱體的傳動(dòng)裝置向一個(gè)方向上不停地進(jìn)行著傳遞工作,并由一個(gè)平面的輔助裝置保證其只能在平面內(nèi)作旋轉(zhuǎn)運(yùn)動(dòng)。為了研究之便,我們特地用一個(gè)很小的傳感器,使位移,壓力、傳感器、熱量傳感器很好地相互協(xié)調(diào)起來(lái)協(xié)同工作,當(dāng)注射機(jī)的注射孔開(kāi)始有位移并要接觸到模腔時(shí),位移傳感器裝置就會(huì)測(cè)出其位移,并作出下一步的控制動(dòng)作。該位移傳感器是非接觸式傳感器,其最大是量程為500lm ,誤差可以控制在0.2lm以下。我們把一個(gè)核心模型放在模腔的中央,其結(jié)構(gòu)是一個(gè)三角形的凹槽,以深度1lm順次排列。核心表面有32768個(gè)三角形的凹槽組成,凹槽相鄰的角度為140o ,距離為1m完成加工的產(chǎn)品組成一個(gè)直徑為12mm厚度為1mm的盤(pán)狀物。由是由在鋼里面加入鎳和磷元素制成的合金做的。有很好的硬度和耐磨性。三角槽的切制是由精度非常高的NC機(jī)切制而成的,有著異常高的精確度。有二組深度為12lm的廢氣排放口,依次排列在圓洞的周?chē)?。用一個(gè)真空泵抽出由于樹(shù)脂的分解而產(chǎn)生的廢氣物。為保證精細(xì)模具的硬度,統(tǒng)一冷卻那些盤(pán)狀產(chǎn)品。我對(duì)使冷卻水做曲線的循環(huán)運(yùn)動(dòng)。注射機(jī)依靠一個(gè)伺服馬達(dá)系統(tǒng),使其可以具備最高達(dá)150KN的夾緊力。評(píng)估微型注射系統(tǒng)以下是成型時(shí)的條件:材料:聚苯乙烯;注射溫度:190;成型設(shè)備溫度:80;注射速度:10mm/s;注射壓力:34mpa;夾緊力:150KN。在這些條件下,我們分別對(duì)如下情景作了比較分析。第一種情況是在約1000Vr 電壓下推動(dòng)注射壓力機(jī)工作,第二種是沒(méi)有電壓作用。圖表3和4顯示的是模具里邊傳感器的測(cè)量結(jié)果。注射壓力的測(cè)量由位于注射壓力機(jī)后面的壓力計(jì)來(lái)測(cè)量,并以數(shù)字表格形式在輸出裝置上顯示。第三組表格顯示了成型一個(gè)周期的數(shù)據(jù)。首先,在第5.16秒,注射動(dòng)作開(kāi)始注射,注射壓力也隨之上升,從第5.6s開(kāi)始注射壓力在2秒之內(nèi)迅速升至34MPA,模腔內(nèi)的應(yīng)力實(shí)行如圖所標(biāo)的傳感器檢測(cè)表明,也隨著增加,只不過(guò)有大約0.35秒的延遲,最終可達(dá)到20MPA,約是注射壓力的59%。在注射壓力保持不變的那一階段,模腔內(nèi)的應(yīng)力迅速下降到零。這充分證明,盡管存在著由注射機(jī)提供注射壓力,但其中一部分由于模腔內(nèi)的摩擦力的存在而被抵消,熔料在模腔內(nèi)凝固的過(guò)程中,熔料因漸成為固體而其余部分也隨之降低為零。在此過(guò)程中,中心位移也經(jīng)歷了與模腔內(nèi)壓力變化規(guī)律相似的變化。這說(shuō)明注射中心也受到了反作用力,在經(jīng)歷大約14S的冷卻過(guò)程后模具被打開(kāi)了。比較低的表格表明了表面溫度和熱量擴(kuò)散的過(guò)程。其中比較平直的那一段曲線顯示的是保壓階段或者說(shuō)是壓力持續(xù)過(guò)程。圖表顯示的是表面溫度連續(xù)上升的過(guò)程,此時(shí),熔料經(jīng)澆口源源不斷地流經(jīng)流道,最終達(dá)到成型模腔。在注射完成后,溫度迅速上升,而后隨即下降(在冷卻作用下)特別是澆口附近的熱量散的比較快,溫度下降也比較明顯。在圖表4中,在第5.6s的時(shí)候,壓力裝置得到約1000V的電壓,由于電壓作用,模腔內(nèi)的壓力升至34MPA,中心的溫度和壓力也隨之上升。切斷電壓后,中心也恢復(fù)到原始狀態(tài),但我們無(wú)法看到這一過(guò)程。下面,我們對(duì)是否微型注射壓力機(jī)時(shí)產(chǎn)品的表面特征作一比較。圖表5、6顯示的是SEM照片而AFM的測(cè)量結(jié)果。從圖片來(lái)看,三角形凹槽的表面粗糙度和均勻程度在這兩種情況下并無(wú)明顯區(qū)別。原因就是因與注射時(shí)的速度與模具微小結(jié)構(gòu)的質(zhì)量有關(guān),另外三角形凹槽的深度和排列密度也是其原因之一。 附件2:外文原文Injection molding for microstructures controlling mold-core extrusion and cavity heat-fluxAbstract In this work we constructed an injection press molding system with a mold-core extrusion mechanism and a small sensor assembly for effectively duplicating microstructures to the mold products. The mold-core extrusion mechanism is driven by a piezo element to apply force on important area with microstructures. For example, after injection it increases the cavity pressure from 20 to 34 MPa. Small sensors consist of the pressure, displacement, and heat flux sensor assemblies,arranged around the small cavity. The signals showed us the physical phenomena inside the mold and may be further used as control signal. In order to evaluate this injection press molding system, we formed micro triangular grooves of pitch 1 lm and angle 140o. The mold-core extrusion gave better diffraction intensity by several percents. 1 IntroductionMany information and medical equipment contain functional parts with microstructures in the order of 1 lm and overall size of several millimeters. Molding is a mass production method widely used in duplicating three dimensional forms of these parts 14. This paper reports our study on one of the molding processes, namely, the injection press molding process.In contrast to regular injection molding process that injects molten resin at high pressure into the cavity for simultaneous filling and forming, injection press molding process separates the time of the two processes. Injection press molding process injects molten resin into a mold cavity at low pressure to keep the flow resistance small,and once the cavity is filled, applies large clamping force on molds to form microstructures. Injection press molding has superb transforming capability used for example, in forming optical disks and LCD light guiding plates.Conventional injection press molding applies large clamping force on molds for forming after the filling process. However, conventional injection press molding process has two problems for forming micro parts described above. First, in forming multiple micro parts with a single set of molds, the temperature and rigidity distributions are not uniform causing difference in forming pressure 5, 6. Generally, the temperature is higher around the mold center and the pressing force is higher around the perimeter. Secondly, even if one tries to flatten the uneven distribution with cooling or pressure control, sensors to monitor the heat flux or pressure are larger than the micro parts and cannot find these conditions within the cavity.Note that measuring heat flux instead of temperature allows monitoring resin solidification in the cavity.The authors of this paper devised mechanisms to (1) individually press each important micro structure area (we call this area the core) with a mold-core extrusion mechanism equipped with a small piezo element and (2) control pressure temperature, and especially the cavity heat flux for each core by arranging a set of sensors around each core and feeding back the sensor signals to the above piezo element. This paper reports our prototype of these mechanisms.2 Designing the injection press molding systemFigure 1 shows the mold we used. First we describe the mold-core extrusion mechanism design equipped with a piezo element. The piezo element used (KISTLER,Z17294X2) has a maximum free displacement of 13 lm and produces a maximum force of 6 kN with no displacement,thus the pressing force varies between 0 and 6 kN depending on the piezo element extension. The piezo element has a single axis force sensor (KISTLER, 9134A) integrated in it for pressing force feedback control. The piezo element unit size is 25 mm in diameter, 54 mm long and its temperature Fig. 1. Test mold range is )20 to 120oC. The symmetric design of the force transferring structure uniformly transfers the pressing force from the piezo element. This cylindrical force transfer mechanism moves in one direction and a planar surface keeps the shaft from rotating.A small sensor assembly was developed for our study in this paper. Displacement, pressure, and heat flux sensors compose the assembly. The displacement sensor measures the displacement at the mold-core extrusion mechanism where it presses the mold-core, and the displacement in the parting direction at the parting line.The displacement sensor is an eddy-current type noncontact displacement sensor (SINKAWA Electric, VC-202N) with range of 500 lm and resolution of 0.2 lm. The above 1 axis force sensor served as the pressure sensor to measure the cavity internal pressure.The heat flux sensor measured the cavity surface temperature and the heat flux. A pair of thermocouples embedded at depths 0.3 and 0.6 mm enabled these measurements with the principle of inverse heat conduction.We mounted the diameter 3.5 mm heat flux sensors on the gate, cavity and sprue lock pin (Fig. 2).We placed one mold-core at the mold center. The microstructure was triangular grooves arranged with pitch 1 lm. The core surface had 32,768 triangular grooves with 140_ angle that are 0.2 mm long on the perimeter of a 10.5 mm circle.Fig. 2. Cavity details and mold-core The finished product formed intoa 1 mm thick disk with diameter 12 mm. The core was made of steel (UDDEHOLM, STAVAX, 52 Rockwell hardness), with Ni-P plating. We cut the triangular grooves with an ultra precision NC machine (FANUC ROBOnano Ui).Two 12 lm deep air vent grooves were placed on the perimeter of the cavities. A vacuum pump pumped out residual air and gas from molten resin. To provide rigidity similar to a regular mold, we kept the entire 80 kgf mold size the same. For uniformly cooling the disk shaped product, we ran cooling water in a circular path. The injection molding machine (FANUC, ROBOSHOT a-15) has a servo motor type drive with maximum clamping force of 150 kN.3 Evaluating the injection press molding systemHere are the molding conditions: Resin: Polystyrene, Resin temperature at injection: 190 oC, Mold set temperature:80 oC, Injection speed: 10 mm/s, Holding pressure:34 MPa, and Clamping force: 150 kN. Under these conditions,we compared the case with a constant voltage of 1000 V applied to push the mold-core extrusion mechanism,and the case without pushing. Figures 3 and 4 show the measurements from the sensors inside the mold. The injection force measured with a load cell placed behind the injection molding machine screw derived the injection pressure in the figure. Fig. 3. Measurements Fig. 4. Measurementsof sensors (without) of sensors (with)Upper figures of Fig. 3 show the molding cycle. First at 5.15 s, the injection starts and the injection pressure suddenly rises. At 5.6 s, the injection pressure is held at 34 MPa for 2 s. The cavity pressure, measured by the 1 axis force sensor, increase with a 0.35 s delay, to reach only 20 MPa, which is 59% of the injection pressure. The cavity pressure quickly went down to about zero during the injection pressure holding period. This shows that despite the pushing force at the source of the injection molding machine, friction reduces pressure which is dropped at cavity. Also, when the resin solidified in the cavity, it parted from the mold to drop the pressure to zero. The core displacement shows a transition similar to the cavity pressure indicating that it was pressed back by the resin. After further cooling to 14 s, the mold was opened.Lower figures of Fig. 3 show the surface temperature and heat flux transitions. The horizontal axes are magni-fied in the lower figures around the pressure holding period.The figure shows the sequential surface temperature rise at the lock pin, gate, and cavity as resin passed over them. The heat flux maximized immediately after injection and gradually decreased. Especially at the gate, the heat flux went down to about zero during pressure holding.In Fig. 4, a voltage of 1000 V was applied to the piezo element for 2 s starting at 5.6 s. The voltage raised the cavity pressure to 34 MPa. The core gradually advanced with drop in cavity pressure from the position pressed in by the resin to eventually reach 9 lm ahead of its original position. Cutting the voltage retracted the core to its original position. But, we were not able to observe change in surface temperature and heat flux due to change in heat transfer from applying voltage.Next we compare form features on the product with and without the mold-core extrusion. Figures 5 and 6 show the SEM photographs and the AFM measurement results. The photographs reveal that the triangular grooves had a uniform pitch with smooth surface regardless of mold-core extrusion, and good form transfer to the products. The reasons are smooth flow of polystyrene and the small aspect ratio of the groove depth and pitch.南京農(nóng)業(yè)大學(xué)工學(xué)院課程設(shè)計(jì)說(shuō)明書(shū)題目:x x x沖壓工藝及模具設(shè)計(jì) 姓 名:學(xué) 號(hào):年 級(jí): 四年級(jí)專(zhuān) 業(yè):機(jī)制學(xué)生類(lèi)別: 四年本科指導(dǎo)教師: 教學(xué)單位:南京農(nóng)業(yè)大學(xué)工學(xué)院2012 年 10月10 日課程設(shè)計(jì)誠(chéng)信聲明書(shū) 本人鄭重聲明:本人所提交的課程設(shè)計(jì),包括設(shè)計(jì)說(shuō)明書(shū)、圖紙、沖壓工藝卡、塑件模塑工藝規(guī)程卡等內(nèi)容,均是本人在指導(dǎo)教師指導(dǎo)下獨(dú)立完成的,與其他同學(xué)不雷同,凡引用他人完成的部分在文中以明確方式已標(biāo)出。本人完全意識(shí)到本聲明的重要性,所引起的后果由本人承擔(dān)。 設(shè) 計(jì) 者: 時(shí)間: 2012年 10 月 日 指導(dǎo)教師已閱: 時(shí)間: 2012 年 月 日注塑模具設(shè)計(jì)【內(nèi)容摘要】注射成型是塑料成型的一種重要方法,它主要適用于熱塑性塑料的成型,可以一次成型形狀復(fù)雜的精密塑件。本課題就是將塑料件作為設(shè)計(jì)模型,將注射模具的相關(guān)知識(shí)作為依據(jù),闡述塑料注射模具的設(shè)計(jì)過(guò)程。通過(guò)對(duì)塑料制品成型工藝的正確分析,設(shè)計(jì)了一副塑料模具。模具中決定塑件幾何形狀和尺寸的零部件稱(chēng)為成型零件,包括前模板、前模仁、后模板、后模仁、后模鑲件等的設(shè)計(jì)與加工工藝過(guò)程。成型零部件在工作時(shí)直接與塑料接觸,在一定的溫度下承受熔體的高溫和高壓,因此必須要有合理的結(jié)構(gòu)、較高的強(qiáng)度和剛度、較好的耐磨性、正確的幾何形狀、較高的尺寸精度和較低的表面粗糙度。重要零件的工藝參數(shù)的選擇與計(jì)算,推出機(jī)構(gòu)與澆注系統(tǒng)以及其它結(jié)構(gòu)的設(shè)計(jì)過(guò)程。設(shè)計(jì)成型零部件時(shí),應(yīng)根據(jù)塑料的特性、塑件的結(jié)構(gòu)和使用要求,確定型腔的總體布局,選擇分型面,確定脫模方式,設(shè)計(jì)澆注系統(tǒng)、排溢系統(tǒng)等,然后根據(jù)加工工藝和裝配工藝的要求進(jìn)行成型零部件的結(jié)構(gòu)設(shè)計(jì),計(jì)算成型零部件的工作尺寸,對(duì)關(guān)鍵的成型零部件進(jìn)行強(qiáng)度和剛度校核?!娟P(guān)鍵詞】塑料模具,注射成型,模具設(shè)計(jì)目錄目錄4第1章 緒論71.1 模具的作用與地位71.2 本次畢業(yè)設(shè)計(jì)研究目的及意義7第2章CAD技術(shù)在注塑模具行業(yè)中的應(yīng)用82.1CAD發(fā)展概況82.2注塑模CAD內(nèi)容9第3章塑件分析103.1 塑件的二維圖(圖3-1)103.2 塑料名稱(chēng)103.3 生產(chǎn)綱領(lǐng)103.4 塑件分析10第4章塑件結(jié)構(gòu)及工藝性分析114.1 開(kāi)模方向114.2 脫模斜度114.3 分型面114.4 收縮率114.5 零件壁厚114.6 圓角12第5章PP的材料成型特征與工藝參數(shù)135.1 PP性能13第6章注射機(jī)的選擇及校核156.1注射機(jī)的選擇156.2型腔數(shù)目的確定及校核176.3鎖模力的校核176.4開(kāi)模行程的校核18第7章澆注系統(tǒng)的設(shè)計(jì)197.1分型面的選擇197.2主流道的設(shè)計(jì)207.3澆口設(shè)計(jì)207.3.1 剪切速率的校核217.3.2 主流道剪切速率校核227.3.3 澆口剪切速率的校核22第8章成型零部件設(shè)計(jì)238.1型腔和型芯工作尺寸計(jì)算238.2 型腔側(cè)壁厚度計(jì)算23第9章 合模導(dǎo)向機(jī)構(gòu)設(shè)計(jì)25第10章 溫度調(diào)節(jié)系統(tǒng)設(shè)計(jì)2710.1對(duì)溫度調(diào)節(jié)系統(tǒng)的要求2710.2冷卻系統(tǒng)設(shè)計(jì):2710.2.1 設(shè)計(jì)原則2710.2.2 冷卻時(shí)間的確定2810.2.3 塑料熔體釋放的熱量2810.2.4 高溫噴嘴向模具的接觸傳熱2910.2.5 注射模通過(guò)自然冷卻傳導(dǎo)走的熱量2910.2.6 冷卻系統(tǒng)的計(jì)算3110.2.7 凹模冷卻系統(tǒng)的計(jì)算31第11章 模具工作原理說(shuō)明34結(jié)論與展望35致謝36參考文獻(xiàn)37第1章 緒論1.1 模具的作用與地位模具是指工業(yè)生產(chǎn)上通過(guò)注塑、壓鑄或鍛壓等方式生產(chǎn)產(chǎn)品所用的各種模型和工具,是工業(yè)生產(chǎn)中極其重要而又不可或缺的特殊基礎(chǔ)工藝裝備,被稱(chēng)為“工業(yè)之母”。其生產(chǎn)過(guò)程集精密制造、計(jì)算機(jī)技術(shù)和智能控制為一體,既是高新技術(shù)載體,又是高新技術(shù)產(chǎn)品。由于使用模具批量生產(chǎn)制件具有的高生產(chǎn)效率、高一致性、低耗能耗材,以及有較高的精度和復(fù)雜程度,因此已越來(lái)越被國(guó)民經(jīng)濟(jì)各工業(yè)生產(chǎn)部門(mén)所重視,被廣泛應(yīng)用于機(jī)械、電子、汽車(chē)、信息、航空、航天、輕工、軍工、交通、建材、醫(yī)療器械、五金工具、生物、能源、日用品等制造領(lǐng)域,據(jù)資料統(tǒng)計(jì),利用模具制造的零件數(shù)量,在飛機(jī)、汽車(chē)、摩托車(chē)、拖拉機(jī)、電機(jī)、電器、儀器儀表等機(jī)電產(chǎn)品中占80%以上;在電腦、電視機(jī)、攝像機(jī)、照相機(jī)、錄像機(jī)、傳真機(jī)、電話及手機(jī)等電子產(chǎn)品中占85%以上;在電冰箱、空調(diào)、洗衣機(jī)、微波爐、吸塵器、電風(fēng)扇、自行車(chē)等輕工業(yè)產(chǎn)品中占90%以上;在槍支等兵器軍工產(chǎn)品中占95%以上。為我國(guó)經(jīng)濟(jì)發(fā)展、國(guó)防現(xiàn)代化和高端技術(shù)服務(wù)做了重要貢獻(xiàn)。模具工業(yè)是重要的基礎(chǔ)工業(yè)。工業(yè)要發(fā)展,模具須先行。沒(méi)有高水平的模具就沒(méi)有高水平的工業(yè)產(chǎn)品。現(xiàn)在,模具工業(yè)水平已經(jīng)成為衡量一個(gè)國(guó)家制造業(yè)水平高低的重要標(biāo)志,在國(guó)民經(jīng)濟(jì)中占有重要的地位,模具技術(shù)也已成為衡量一個(gè)國(guó)家產(chǎn)品制造水平的重要標(biāo)志之一。1.2 本次畢業(yè)設(shè)計(jì)研究目的及意義(1).調(diào)查研究中外文獻(xiàn)檢索和閱讀能力;(2).綜合運(yùn)用專(zhuān)業(yè)理論和知識(shí)分析、解決實(shí)際問(wèn)題的能力;(3).設(shè)計(jì)、計(jì)算與繪圖的能力,包括使用計(jì)算機(jī)的能力;(4).掌握模具設(shè)計(jì)方法和步驟,了解模具的加工工藝過(guò)程;(5).邏輯思維與形象思維相結(jié)合的文字及口頭表達(dá)能力;(6).撰寫(xiě)設(shè)計(jì)說(shuō)明書(shū)(論文)的能力;(7).養(yǎng)成嚴(yán)肅、認(rèn)真、細(xì)致地從事技術(shù)工作的優(yōu)良作風(fēng)。第2章CAD技術(shù)在注塑模具行業(yè)中的應(yīng)用2.1CAD發(fā)展概況計(jì)算機(jī)輔助設(shè)計(jì)(CAD-ComputerAidedDesign)指利用計(jì)算機(jī)及其圖形設(shè)備幫助設(shè)計(jì)人員進(jìn)行設(shè)計(jì)工作。CAD的應(yīng)用,使得設(shè)計(jì)人員在設(shè)計(jì)過(guò)程中,能充分發(fā)揮計(jì)算機(jī)的強(qiáng)大算術(shù)邏輯運(yùn)算功能、大容量信息存儲(chǔ)與快速信息查找的能力,完成信息管理、數(shù)值計(jì)算、分析模擬、優(yōu)化設(shè)計(jì)和繪圖等項(xiàng)任務(wù),并通過(guò)設(shè)計(jì)人員進(jìn)行創(chuàng)造性的設(shè)計(jì)以實(shí)現(xiàn)最優(yōu)方案。CAD(ComputerAidedDesign)誕生于20世紀(jì)60年代,是美國(guó)麻省理工大學(xué)提出了交互式圖形學(xué)的研究計(jì)劃,由于當(dāng)時(shí)硬件設(shè)施的昂貴,只有美國(guó)通用汽車(chē)公司和美國(guó)波音航空公司使用自行開(kāi)發(fā)的交互式繪圖系統(tǒng)。70年代,小型計(jì)算機(jī)費(fèi)用下降,美國(guó)工業(yè)界才開(kāi)始廣泛使用交互式繪圖系統(tǒng)。80年代,由于PP機(jī)的應(yīng)用,CAD得以迅速發(fā)展,出現(xiàn)了專(zhuān)門(mén)從事CAD系統(tǒng)開(kāi)發(fā)的公司。CAD最早的應(yīng)用是在汽車(chē)制造、航空航天以及電子工業(yè)的大公司中。隨著計(jì)算機(jī)變得更便宜,應(yīng)用范圍也逐漸變廣。通用的CAD件是AutoCAD,但AutoCAD是一種通用的繪圖軟件,對(duì)機(jī)械行業(yè)針對(duì)性差,不過(guò)幸運(yùn)的是,AutoCAD是個(gè)開(kāi)放性軟件,可以對(duì)它進(jìn)行二次開(kāi)發(fā),如采用ADS,ARX語(yǔ)言等。由于二次開(kāi)發(fā)的深入,加強(qiáng)了參數(shù)化設(shè)計(jì)、智能化設(shè)計(jì)等,這樣充分發(fā)揮了計(jì)算機(jī)的強(qiáng)大的搜索功能和運(yùn)算功能。CAD技術(shù)的發(fā)展與應(yīng)用對(duì)于徹底改變塑料模具設(shè)計(jì)與制造的傳統(tǒng)方法與落后面貌,提高模具的設(shè)計(jì)質(zhì)量與設(shè)計(jì)效率,縮短模具的設(shè)計(jì)制造周期,具有重要作用。世界上第一套塑料模具CAD軟件是澳大利亞MOLDFLOW公司于1976年推出并以公司名字命名的MOLDFLOW。目前MOLDFLOW已經(jīng)發(fā)展得比較完善,能夠?yàn)樵O(shè)計(jì)人員、模具制作人員、工程師提供指導(dǎo),通過(guò)仿真設(shè)置和結(jié)果闡明來(lái)展示壁厚、澆口位置、材料、幾何形狀變化如何影響可制造性。實(shí)現(xiàn)了對(duì)注塑過(guò)程的模擬、設(shè)計(jì)原理的應(yīng)用和精確計(jì)算,并逐步優(yōu)化模擬過(guò)程,使設(shè)計(jì)工程師在產(chǎn)品設(shè)計(jì)階段可以在計(jì)算機(jī)上“制造”塑料產(chǎn)品。據(jù)美國(guó)Protetype&PlasticMold公司統(tǒng)計(jì),該公司使用CAD系統(tǒng)后一年內(nèi)生產(chǎn)效率提高了一倍,節(jié)省了35%的準(zhǔn)備時(shí)間,制造周期平均縮短了30%,材料節(jié)省了10%,模具成本降低了10%30%。模具CAD/CAM/CAE技術(shù)是模具設(shè)計(jì)制造的發(fā)展方向。隨著微機(jī)軟件的發(fā)展和進(jìn)步,普及CAD/CAM/CAE技術(shù)的條件已基本成熟,各企業(yè)將加大CAD/CAM技術(shù)培訓(xùn)和技術(shù)服務(wù)的力度;進(jìn)一步擴(kuò)大CAE技術(shù)的應(yīng)用范圍。計(jì)算機(jī)和網(wǎng)絡(luò)的發(fā)展正使CAD/CAM/CAE技術(shù)跨地區(qū)、跨企業(yè)、跨院所地在整個(gè)行業(yè)中推廣成為可能,實(shí)現(xiàn)技術(shù)資源的重新整合,使虛擬制造成為可能。塑料模具CAD的應(yīng)用帶來(lái)了巨大的社會(huì)效益和經(jīng)濟(jì)效益。2.2注塑模CAD內(nèi)容在模具設(shè)計(jì)中,模架及某些零件,如導(dǎo)柱、導(dǎo)套、推桿、支撐塊、澆口套、定位圈等分別已形成廠標(biāo)、行標(biāo)或國(guó)標(biāo)。對(duì)于這些標(biāo)準(zhǔn)的或本單位采用的模架及零件可在通用的二維工程圖CAD系統(tǒng)中建立模架、零件庫(kù),以被設(shè)計(jì)時(shí)調(diào)用。對(duì)于澆注系統(tǒng)、溫控系統(tǒng)、模架結(jié)構(gòu)強(qiáng)度計(jì)算等內(nèi)容,已有一些較成熟的計(jì)算方法或經(jīng)驗(yàn)計(jì)算方法,可設(shè)置這些計(jì)算公式的模塊,以便設(shè)計(jì)人員進(jìn)行快速計(jì)算。注塑模CAD的內(nèi)容有以下幾點(diǎn):1.注塑制品的幾何造型2.模腔面形狀的生成3.模具結(jié)構(gòu)方面的設(shè)計(jì)4.標(biāo)準(zhǔn)模架選擇5.部裝圖及總裝圖的生成6.模具零件圖的生成7.常規(guī)計(jì)算和校核。第3章塑件分析3.1 塑件的二維圖(圖3-1)圖3-1(塑件的二維圖建模)3.2 塑料名稱(chēng)根據(jù)各材料的注塑性能及加工使用性能,綜合市場(chǎng)價(jià)格,選擇材料為PP。3.3 生產(chǎn)綱領(lǐng)因市場(chǎng)需求量大,大批量自動(dòng)化生產(chǎn)。3.4 塑件分析多孔塑料罩是人們用手接觸相當(dāng)頻繁的部件,對(duì)其有著較高的外觀要求,要求表面色澤均勻,成型收縮率小,制件成型后不能有明顯色差、縮痕、熔接痕、污點(diǎn)、銀絲等缺陷,還需要有一定的手感。綜合考慮選擇PP。第4章塑件結(jié)構(gòu)及工藝性分析該塑件是多孔塑料罩,對(duì)表面美觀有一定要求,設(shè)計(jì)時(shí)要注意對(duì)外邊面的處理。塑件基本尺寸,多孔塑料罩表面圓角5度,壁厚約1mm。4.1 開(kāi)模方向由零件的三維圖分析,作為外殼類(lèi)產(chǎn)品,外表面的表面質(zhì)量是比較重要的,再根據(jù)模具的結(jié)構(gòu)分析得到,產(chǎn)品的外表面應(yīng)該在定模上,在產(chǎn)品的內(nèi)表面設(shè)置頂出機(jī)構(gòu),所以開(kāi)模方向應(yīng)沿零件的Z軸。4.2 脫模斜度根據(jù)產(chǎn)品的外型,結(jié)合產(chǎn)品的工作條件、工藝特點(diǎn),為提高產(chǎn)品的生產(chǎn)效率和表面質(zhì)量,因此根據(jù)模具設(shè)計(jì)與制造簡(jiǎn)明手冊(cè)查得:所以脫模斜度設(shè)置為1。4.3 分型面結(jié)合零件的使用要求,應(yīng)保證其外表面的注塑質(zhì)量,零件的內(nèi)表面應(yīng)留在動(dòng)模側(cè),開(kāi)模的時(shí)候,零件的外表面應(yīng)與定模分離,所以零件的分型面應(yīng)設(shè)置在沿零件的外表面上,并根據(jù)流道等條件進(jìn)行設(shè)置,具體設(shè)定在后文中表述。4.4 收縮率PP的收縮率一般為0.60.8%,在設(shè)計(jì)本產(chǎn)品時(shí),結(jié)合產(chǎn)品的結(jié)構(gòu)工藝特點(diǎn)和材料的特性,在本設(shè)計(jì)中,零件的收縮率為0.7%。4.5 零件壁厚本產(chǎn)品的壁厚設(shè)置為2mm,是根據(jù)產(chǎn)品的工作要求和PP的化學(xué)和流動(dòng)特性確定的。4.6 圓角塑件底面與面之間一般應(yīng)采用圓弧過(guò)渡,這樣不僅可以避免塑件尖角處的應(yīng)力集中提高塑件強(qiáng)度,而且可以改善物料的流動(dòng)狀態(tài),降低充模阻力,便于充模。另外,塑件轉(zhuǎn)角處的圓角對(duì)應(yīng)于模具上的圓角,有時(shí)可便于模具的加工制造及模具強(qiáng)度的提高,避免模具在淬火或使用時(shí)應(yīng)力裂開(kāi)。塑件轉(zhuǎn)角處的圓角半徑通常不要小于0.5到1mm,在不影響塑件使用的前提下應(yīng)盡量取大些,綜合考慮以上的各種因素后,確定塑件的圓角半徑為2mm。第5章PP的材料成型特征與工藝參數(shù)5.1 PP性能該塑件所采用材料為:聚丙烯(PP)。它來(lái)源廣泛,合成工藝較簡(jiǎn)單、密度小、價(jià)格低、加工成型容易。拉伸強(qiáng)度、壓縮強(qiáng)度等都比低壓聚乙烯高,還有很突出的剛性和耐折疊性,以及優(yōu)良的耐腐蝕性和電絕緣性。但沖擊性能不足,低溫條件下易脆裂,且成型收縮率較大,熱變形溫度不高,但可以通過(guò)改性改善。它主要的成形特性如下:1.結(jié)晶性料,吸濕性小,可能發(fā)生熔融破裂,長(zhǎng)期與熱金屬長(zhǎng)期接觸易發(fā)生分解。2.流動(dòng)性極好,溢邊值0.003mm左右。3.冷卻速度快,澆注系統(tǒng)及冷卻系統(tǒng)應(yīng)散熱緩慢。4.成形收縮范圍大,收縮率大,易發(fā)生縮孔、凹痕、變形、方向性強(qiáng)。5.注意控制成形溫度,料溫低方向性明顯,尤其低溫高壓時(shí)更明顯,模具溫度低于50以下塑件不光澤,易產(chǎn)生熔接不良,流痕;90以上易發(fā)生翹曲、變形。6.塑件應(yīng)壁厚均勻,避免缺口、尖角,以避免應(yīng)力集中。表1-1聚丙烯成型條塑料名稱(chēng)聚丙烯料筒溫度()后段160170中段200220前段180200縮寫(xiě)PP注射壓力(MPa)70120注射成形機(jī)類(lèi)型螺桿式注射時(shí)間(s)05密度(g/cm3)0.900.91保壓時(shí)間(s)20 60比容(ml/g )1.92冷卻時(shí)間(s)1550收縮率(% )1.02.5總周期(s)40120噴嘴溫度()170190螺桿轉(zhuǎn)速(r/min)48干燥溫度()7085適用注射機(jī)類(lèi)型螺桿式柱塞式均可時(shí)間(h)2模具溫度()4080后處理無(wú) 第6章注射機(jī)的選擇及校核6.1注射機(jī)的選擇設(shè)計(jì)模具時(shí),應(yīng)詳細(xì)地了解注射機(jī)的技術(shù)規(guī)范,才能設(shè)計(jì)出合乎要求的模具,應(yīng)了解的技術(shù)規(guī)范有:注射機(jī)的最大注射量、最大注射壓力、最大鎖模力、最大成型面積、模具最大厚度和最小厚度、最大開(kāi)模行程以及機(jī)床模板安裝模具的螺釘孔的位置和尺寸。公稱(chēng)注塑量;指在對(duì)空注射的情況下,注射螺桿或柱塞做一次最大注射行程時(shí),注塑成型過(guò)程所需要的時(shí)間稱(chēng)為裝置所能達(dá)到的最大注射量,反映了注塑機(jī)的加工能力。注射壓力;為了克服熔料流經(jīng)噴嘴,澆道和型腔時(shí)的流動(dòng)阻力,螺桿(或柱塞)對(duì)熔料必須施加足夠的壓力,我們將這種壓力稱(chēng)為注射壓力。注射速率;為了使熔料及時(shí)充滿(mǎn)型腔,除了必須有足夠的注射壓力外,熔料還必須有一定的流動(dòng)速率,描述這一參數(shù)的為注射速率或注射時(shí)間或注射速度。常用的注射速率如表所示。表1注射速率注射量/CM125250500100020004000600010000注射速率/CM/S125200333570890133016002000注射時(shí)間/S11.251.51.752.2533.755塑化能力;單位時(shí)間內(nèi)所能塑化的物料量.塑化能力應(yīng)與注塑機(jī)的整個(gè)成型周期配合協(xié)調(diào),若塑化能力高而機(jī)器的空循環(huán)時(shí)間長(zhǎng),則不能發(fā)揮塑化裝置的能力,反之則會(huì)加長(zhǎng)成型周期.鎖模力;注塑機(jī)的合模機(jī)構(gòu)對(duì)模具所能施加的最大夾緊力,在此力的作用下模具不應(yīng)被熔融的塑料所頂開(kāi).合模裝置的基本尺寸;包括模板尺寸,拉桿空間,模板間最大開(kāi)距,動(dòng)模板的行程,模具最大厚度與最小厚度等.這些參數(shù)規(guī)定了機(jī)器加工制件所使用的模具尺寸范圍.開(kāi)合模速度;為使模具閉合時(shí)平穩(wěn),以及開(kāi)模,推出制件時(shí)不使塑料制件損壞,要求模板在整個(gè)行程中的速度要合理,即合模時(shí)從快到慢,開(kāi)模時(shí)由慢到快在到停.空循環(huán)時(shí)間;在沒(méi)有塑化,注射保壓,冷卻,取出制件等動(dòng)作的情況下,完成一次循環(huán)所需的時(shí)間.選擇螺桿式注塑機(jī)的型號(hào)為:XS-ZY-500,其主要技術(shù)參數(shù)如下:表2注射機(jī)參數(shù)注塑機(jī)型號(hào)XS-ZY-額定注射量500cm3螺桿(柱塞)直徑85mm注射壓力121Mpa注射行程260mm注射方式螺桿式鎖模力4500KN最大成型面積1800cm2最大開(kāi)合模行程700mm模具最大厚度700mm模具最小厚度300mm噴嘴圓弧半徑R18mm噴嘴孔直徑7.5mm頂出形式兩側(cè)設(shè)有頂桿,機(jī)械頂出動(dòng)、定模固定板尺寸900X1000mm拉桿空間650X550mm合模方式中心液壓、兩側(cè)機(jī)械頂桿液壓泵流量200、18L/min壓力614Mpa電動(dòng)機(jī)功率40KW加熱功率14KW機(jī)器外形尺寸7670X1740X2380mm6.2型腔數(shù)目的確定及校核根據(jù)市場(chǎng)經(jīng)濟(jì)及生產(chǎn)效率的要求,本模具采用一模1腔型腔結(jié)構(gòu),即型腔數(shù)目。因型腔數(shù)量與注射機(jī)的塑化速率、最大注射量及鎖模量等參數(shù)有關(guān),因此有任何一個(gè)參數(shù)都可以校核型腔的數(shù)量。一般根據(jù)注射機(jī)料筒塑化速率確定型腔數(shù)量;式中注射機(jī)最大注射量的利用系數(shù),一般取0.8;注射機(jī)最大注塑量,g;澆注系統(tǒng)所需塑料質(zhì)量,;單個(gè)塑件的質(zhì)量,。式中、也可以為注射機(jī)最在注射體積(cm3)、澆注系統(tǒng)凝料體積(cm3)、單個(gè)塑件的體積(cm3)。故取滿(mǎn)足我們?cè)O(shè)計(jì)要求。6.3鎖模力的校核注射成型時(shí),塑件在模具分型面上的投影面積是影響鎖模力的主要因素,其數(shù)值越大,需要的鎖模力也就越大。注射成型時(shí),模具所需的鎖模力與塑件在水平分型面上的投影面積有關(guān),為了可靠地鎖模,不使成型過(guò)程中出現(xiàn)溢料現(xiàn)象,應(yīng)使塑料熔體對(duì)型腔的成型壓力與塑件和澆注系統(tǒng)在分型面上的投影面積之和的乘積小于注射機(jī)額定鎖模離,即:(式中符號(hào)同前)式中為單個(gè)塑件在分型面上的投影面積,mm2;為澆注系統(tǒng)在分型面上的投影與型腔不重疊部分的面積,mm2;P為塑料熔體在型腔中的成型壓力,Mpa;為注塑機(jī)的額定銷(xiāo)模力,N。6.4開(kāi)模行程的校核注射機(jī)開(kāi)模行程是有限的,開(kāi)模行程應(yīng)該滿(mǎn)足分開(kāi)模具取出塑件的需要。因此,塑料注射成型機(jī)的最大開(kāi)模距離必須大于取出塑件所需的開(kāi)幕距離。為了保證開(kāi)模后既能取出塑件又能取出流道內(nèi)的凝料,對(duì)于雙分型面注射模具,需要滿(mǎn)足下式:(4-3)式中模具開(kāi)模行程;推出距離(脫模距離)塑件高度;(H2)定模板與中間板之間的分開(kāi)距離。則=371mm500mm小于注射機(jī)最大開(kāi)合模行程,故滿(mǎn)足要求。第7章澆注系統(tǒng)的設(shè)計(jì)澆注系統(tǒng)是引導(dǎo)塑料熔體從注射機(jī)噴嘴到模具型腔的進(jìn)料通道,具有傳質(zhì)、傳壓和傳熱的功能,它分為普通流道澆注系統(tǒng)和熱流道澆注系統(tǒng)。該模具采用普通流道澆注系統(tǒng),包括主流到,分流道、冷料穴,澆口。澆注系統(tǒng)的設(shè)計(jì)是注塑模具設(shè)計(jì)的一個(gè)重要環(huán)節(jié),它對(duì)注塑成型周期和塑件質(zhì)量(如外觀、物理性能、尺寸精度等)都有直接影響,故設(shè)計(jì)時(shí)要使型腔布置和澆口開(kāi)始部位力求對(duì)稱(chēng),防止模具承受偏載而產(chǎn)生溢料現(xiàn)象,而澆口的位置也要適當(dāng),盡量避免沖擊嵌件和細(xì)小的型芯,防止型芯變形,澆口的殘痕不影響塑件的外觀。概括說(shuō)來(lái),需要注意以下問(wèn)題:1.適應(yīng)塑料的工藝性;2.流程要短;3.排氣良好;4.避免料流直沖型芯或嵌件;5.澆注系統(tǒng)在分型面上的投影面積應(yīng)盡量?。?.澆注系統(tǒng)的位置盡量與模具的軸線對(duì)稱(chēng);7.修整方便,保證制品外觀質(zhì)量;8.防止塑件變形。7.1分型面的選擇分型面是模具結(jié)構(gòu)中的基準(zhǔn)面,選擇模具分型面時(shí)通常考慮如下有關(guān)問(wèn)題:1根據(jù)塑件的某些技術(shù)要求,確定成型零件在動(dòng)模和定模上的配置;2塑件的生產(chǎn)批量;3結(jié)合塑件的流動(dòng)性確定澆注系統(tǒng)的形式和位置;4型腔的溢流和排氣條件;5模具加工的工藝性。7.2主流道的設(shè)計(jì)主流道是指澆注系統(tǒng)中從注射機(jī)噴嘴與模具接觸處開(kāi)始到分流道為止的塑料熔體的流動(dòng)通道,是熔體最先流經(jīng)模具的部分。在臥式注射機(jī)上主流道垂直于分型面,為使凝料能順利拔出,設(shè)計(jì)成圓錐形,主流道通常設(shè)計(jì)在主流道襯套(澆口套)中,為了方便注射,主流道始端的球面必須比注射機(jī)的噴嘴圓弧半徑大12mm,防止主流道口部積存凝料而影響脫模,通常將主流道小端直徑設(shè)計(jì)的比噴嘴孔直徑大0.51mm。其中,澆口套主流道大端直徑D應(yīng)盡量選得小些。如果D過(guò)大模腔內(nèi)部壓力對(duì)澆口套的反作用也將按比例增大,到達(dá)一定程度澆口套容易從模體中彈出。如下圖18所示為主流道各部尺寸:按照前面所選取的注射機(jī)的參數(shù)和設(shè)計(jì)要求主流道各部分尺寸計(jì)算如下:主流道小端直徑主流道球面半徑;主流道錐角26,為了方便拉出主流道,這里取2;主流道長(zhǎng)度L主流道大端直徑7.3澆口設(shè)計(jì)澆口又稱(chēng)進(jìn)料口,是連接分流道與型腔之間的一段細(xì)短流道,澆口是連接分流道與型腔的通道,它是澆注系統(tǒng)最關(guān)鍵的部分,它的形狀、尺寸、位置對(duì)塑件的質(zhì)量有著很大的影響。它的作用主要有以下兩個(gè):一是作為塑料熔體的通道,二是澆口的適時(shí)凝固可控制保壓時(shí)間。常用的澆口形式有直接澆口、點(diǎn)澆口、點(diǎn)澆口、輪輻澆口、潛伏澆口等。由于不同的澆口形式對(duì)塑料熔體的充型特性、成型質(zhì)量及塑件的性能會(huì)產(chǎn)生不同的影響。而各種塑料因其性能的差異對(duì)于不同的澆口形式也會(huì)有不同的適應(yīng)性。在模具設(shè)計(jì)時(shí),澆口位置及尺寸要求比較嚴(yán)格,它一般根據(jù)下述幾項(xiàng)原則來(lái)參考:盡量縮短流動(dòng)距離;澆口應(yīng)開(kāi)設(shè)在塑件壁最厚處;必須盡量減少或避免熔接痕;應(yīng)有利于型腔中氣體的排除;考慮分子定向的影響;避免產(chǎn)生噴射和蠕動(dòng);不在承受彎曲或沖擊載荷的部位設(shè)置澆口;澆口位置的選擇應(yīng)注意塑件外觀質(zhì)量。 7.3.1 剪切速率的校核生產(chǎn)實(shí)踐表明,當(dāng)注射模主流道和分流道的剪切速率R=5.810510S、澆口的剪切速率R=1010S時(shí),所成型的塑件質(zhì)量最好。對(duì)一般熱塑性塑料,將以上推薦的剪切速率值作為計(jì)算依據(jù),可用以下經(jīng)驗(yàn)公式表示:R= 式中 q體積流量(CM/S);R澆注系統(tǒng)斷面當(dāng)量半徑(CM)。7.3.2 主流道剪切速率校核Q=0.8Q/T =338.21.5=225.5 (CM/S) T注射時(shí)間:T=2.5(S); R主流道的平均當(dāng)量截面半徑:R=0.538(CM) d 主流道小端直徑 , d=0.63 (CM); d主流道大端直徑,d=1.2(CM)R= 3.1158.9/(3.140.2783)=1.4710 S5101.4710510 (滿(mǎn)足條件)7.3.3 澆口剪切速率的校核R= =3.67152/(3.140.423)=1.45103 S其中:澆口面積S=/4(D22-D12),當(dāng)量面積S=R 所以R=7mm。 單從計(jì)算上看,交口剪切速率偏小。但由于模具比較特殊,為一模1腔,無(wú)分流道,壓力損失少,進(jìn)料速度快,成型比較容易,傳遞壓力好,所以澆口的剪切速率是合適的。從以上的計(jì)算結(jié)果看,流道與澆口剪切速率的值都落在合理的范圍內(nèi),證明流道與澆口的尺寸取值是合理的。第8章成型零部件設(shè)計(jì)本成型零件工作尺寸計(jì)算時(shí)均采用平均尺寸、平均收縮率、平均制造公差和平均磨損量來(lái)進(jìn)行計(jì)算。查表得PP收縮率為Q=0.30.8%,故平均收縮率為Qcp=(0.3+0.8)%/2=0.55%,考慮到工廠模具制造的現(xiàn)有條件,模具制造公差取z=/3。8.1型腔和型芯工作尺寸計(jì)算型腔徑向尺寸 已知在規(guī)定條件下的平均收縮率S,塑件的基本尺寸 Ls是最大的尺寸,其公差為負(fù)偏差,因此塑件平均尺寸為L(zhǎng)s-,模具型腔的基本尺寸Lm是最小尺寸,公差為正偏差,型腔的平均尺寸為L(zhǎng)m+z/2。型腔的平均磨損量為c/2,如以Lm +Z表示型腔尺寸, PP平均收縮率S=0.55%.Lm +z/2+c/2=(Ls-/2)+(Ls-/2)S8.2 型腔側(cè)壁厚度計(jì)算 (1)凹模型腔側(cè)壁厚度計(jì)算凹模型腔為組合式型腔,按強(qiáng)度條件計(jì)算公式SR-r=r(/-2p)1/2-1進(jìn)行計(jì)算。式中各參數(shù)分別為:p=50Mpa(選定值);=0.05mm;=160MPar=28mmSR-r=r(/-2p)1/2-1=28(160/160-250)1/2-116.8mm一般在加工時(shí)為了加工方便,我們通常會(huì)取整數(shù),所以凹模型腔側(cè)壁厚度為17。(2)凹模底板厚度計(jì)算按強(qiáng)度條件計(jì)算,型腔地板厚為:p=50 Mpar=28mm=160MPah1.22pr2/1/21.2250282/1601/217.3mm一般在加工時(shí)為了加工方便,我們通常會(huì)取整數(shù),所以凹模型腔側(cè)壁厚度為18mm。第9章 合模導(dǎo)向機(jī)構(gòu)設(shè)計(jì)導(dǎo)向機(jī)構(gòu)是保證動(dòng)模和定模上下模合模時(shí),正確定位和導(dǎo)向的零件。合模導(dǎo)向機(jī)構(gòu)主要有導(dǎo)柱導(dǎo)向和錐面定位,本設(shè)計(jì)采用導(dǎo)柱導(dǎo)向定位。導(dǎo)向機(jī)構(gòu)除了有定位和導(dǎo)向作用外,還要承受一定的側(cè)向壓力。塑料熔體在充型過(guò)程中可能產(chǎn)生單面?zhèn)葔毫Γ蛘哂捎诔尚驮O(shè)備精度低的影響,使導(dǎo)柱承受了一定的側(cè)向壓力,從保證模具的正常工作。導(dǎo)柱的結(jié)構(gòu)形式可采用帶頭導(dǎo)柱和有肩導(dǎo)柱,導(dǎo)柱導(dǎo)面部分長(zhǎng)度比凸模端面高出812,以避免出現(xiàn)導(dǎo)柱未導(dǎo)正方向而型芯先進(jìn)入型腔。導(dǎo)柱材料采用T10,HRC5055,導(dǎo)柱固定部分表面粗糙度Ra為0.8m,導(dǎo)向部分Ra為0.80.4m,本設(shè)計(jì)采用?根導(dǎo)柱,固定端與模板間采用H7/m6 導(dǎo)套常采用T10A,型導(dǎo)套,采用H7/m6配合鑲?cè)肽0?。具體結(jié)構(gòu)如下圖所示:導(dǎo)柱:國(guó)家標(biāo)準(zhǔn)規(guī)定了兩種結(jié)構(gòu)形式,分為帶頭導(dǎo)柱和有肩導(dǎo)柱,大型而長(zhǎng)的導(dǎo)柱應(yīng)開(kāi)設(shè)油槽,內(nèi)存潤(rùn)滑劑,以減小導(dǎo)柱導(dǎo)向的摩擦。若導(dǎo)柱需要支撐模板的重量,特別對(duì)于大型、精密的模具,導(dǎo)柱的直徑需要進(jìn)行強(qiáng)度校核。導(dǎo)套:導(dǎo)套分為直導(dǎo)套和帶頭導(dǎo)套,直導(dǎo)套裝入模板后,應(yīng)有防止被拔出的結(jié)構(gòu),帶頭導(dǎo)柱軸向固定容易。 設(shè)計(jì)導(dǎo)柱和導(dǎo)套需要注意的事項(xiàng)有:(1)合理布置導(dǎo)柱的位置,導(dǎo)柱中心至模具外緣至少應(yīng)有一個(gè)導(dǎo)柱直徑的厚度;導(dǎo)柱不應(yīng)設(shè)在矩形模具四角的危險(xiǎn)斷面上。通常設(shè)在長(zhǎng)邊離中心線的1/3處最為安全。導(dǎo)柱布置方式常采用等徑不對(duì)稱(chēng)布置,或不等直徑對(duì)稱(chēng)布置。(2)導(dǎo)柱工作部分長(zhǎng)度應(yīng)比型芯端面高出68 mm,以確保其導(dǎo)向與引導(dǎo)作用。(3)導(dǎo)柱工作部分的配合精度采用H7/f7,低精度時(shí)可采取更低的配合要求;導(dǎo)柱固定部分配合精度采用H7/k6;導(dǎo)套外徑的配合精度采取H7/k6。配合長(zhǎng)度通常取配合直徑的1.52倍,其余部分可以擴(kuò)孔,以減小摩擦,降低加工難度。(4)導(dǎo)柱可以設(shè)置在動(dòng)模或定模,設(shè)在動(dòng)模一邊可以保護(hù)型芯不受損壞,設(shè)在定模一邊有利于塑件脫模。本書(shū)模具設(shè)置四個(gè)標(biāo)準(zhǔn)帶頭導(dǎo)柱配合標(biāo)準(zhǔn)直導(dǎo)套作為導(dǎo)向系統(tǒng),導(dǎo)柱設(shè)置在動(dòng)模上,以保護(hù)型芯不受損壞。導(dǎo)套和導(dǎo)柱結(jié)構(gòu)如下:導(dǎo)柱:國(guó)家標(biāo)準(zhǔn)規(guī)定了兩種結(jié)構(gòu)形式,分為帶頭導(dǎo)柱和有肩導(dǎo)柱,大型而長(zhǎng)的導(dǎo)柱應(yīng)開(kāi)設(shè)油槽,內(nèi)存潤(rùn)滑劑,以減小導(dǎo)柱導(dǎo)向的摩擦。若導(dǎo)柱需要支撐模板的重量,特別對(duì)于大型、精密的模具,導(dǎo)柱的直徑需要進(jìn)行強(qiáng)度校核。導(dǎo)套:導(dǎo)套分為直導(dǎo)套和帶頭導(dǎo)套,直導(dǎo)套裝入模板后,應(yīng)有防止被拔出的結(jié)構(gòu),帶頭導(dǎo)柱軸向固定容易。第10章 溫度調(diào)節(jié)系統(tǒng)設(shè)計(jì)模具成型過(guò)程中,模具溫度會(huì)直接影響到塑料熔體的充模、定型、成型周期和塑件質(zhì)量。模具溫度過(guò)高,成型收縮大,脫模后塑件變形大,并且還容易造成溢料和粘膜;模具溫度過(guò)低,則熔體流動(dòng)性差,塑料輪廓不清晰,表面會(huì)產(chǎn)生明顯的銀絲或流紋等缺陷;當(dāng)模具溫度不均勻時(shí),型芯和型腔溫差過(guò)大,塑料收縮不均勻,導(dǎo)致塑料翹曲變形,會(huì)影響塑件的形狀和尺寸精度。綜上所述,模具上需要設(shè)置溫度調(diào)節(jié)系統(tǒng)以達(dá)到理想的溫度要求。PP推薦的成型溫度為160-220,模具溫度為4080 。10.1對(duì)溫度調(diào)節(jié)系統(tǒng)的要求(1) 根據(jù)塑料的品種確定是對(duì)模具采用加熱方式還是冷卻方式;(2)希望模溫均一,塑件各部同時(shí)冷卻,以提高生產(chǎn)率和提高塑件質(zhì)量;(3)采用低的模溫,快速,大流量通水冷卻效果一般比較好;(4)溫度調(diào)節(jié)系統(tǒng)應(yīng)盡可能做到結(jié)構(gòu)簡(jiǎn)單,加工容易,成本低廉;(5)從成型溫度和使用要求看,需要對(duì)該模具進(jìn)行冷卻,以提高生產(chǎn)率。10.2冷卻系統(tǒng)設(shè)計(jì):10.2.1 設(shè)計(jì)原則(1)盡量保證塑件收縮均勻,維持模具的熱平衡;(2)冷卻水孔的數(shù)量越多,孔徑越大,則對(duì)塑件的冷卻效果越好;(3)盡可能使冷卻水孔至型腔表面的距離相等,與制件的壁厚距離相等,經(jīng)驗(yàn)表明,冷卻水管中心距B大約為2.53.5D,冷卻水管壁距模具邊界和制件壁的距離為0.81.5B。最小不要小于10。(4)澆口處加強(qiáng)冷卻,冷卻水從澆口處進(jìn)入最佳;(5)應(yīng)降低進(jìn)水和出水的溫差,進(jìn)出水溫差一般不超過(guò)5(6)冷卻水的開(kāi)設(shè)方向以不影響操作為好,對(duì)于矩形模具,通常沿寬度方向開(kāi)設(shè)水孔。(7)合理確定冷卻水道的形式,確定冷卻水管接頭位置,避免與模具的其他機(jī)構(gòu)發(fā)生干涉。10.2.2 冷卻時(shí)間的確定在對(duì)冷卻系統(tǒng)做計(jì)算之前,需要對(duì)某些數(shù)據(jù)取值,以便對(duì)以后的計(jì)算作出估算;取閉模時(shí)間3S,開(kāi)模時(shí)間3S,頂出時(shí)間2S,冷卻時(shí)間30S,保壓時(shí)間20S,總周期為60S。其中冷卻時(shí)間依塑料種類(lèi)、塑件壁厚而異,一般用下式計(jì)算:t=62/(3.1420.07)8/3.142(200-50)/(80-50)= 73(S)式中:S塑件平均壁厚,S取6mm; 塑料熱擴(kuò)散系數(shù)(mm/s),=0.07;T成型溫度160-220,T取200;T平均脫模溫度,T取80;T模具溫度4080,T取50。 由計(jì)算結(jié)果得冷卻時(shí)間需要73 S,這么長(zhǎng)的冷卻時(shí)間顯然是不現(xiàn)實(shí)的。本模具型芯中的冷卻管道擴(kuò)大為腔體(如下圖),使冷卻水在型芯的中空腔中流動(dòng),冷卻效果大為增強(qiáng)。參照經(jīng)驗(yàn)推薦值,冷卻時(shí)間取30S即可。10.2.3 塑料熔體釋放的熱量Q =nG C(tt)=60217.6101.9(22060)=3969.02KJ/h式中:n每小時(shí)注射次數(shù), n=60 (次);G每次的注射量(KG),G=217.610; C塑料的比熱容(KJ/KG),C=1.9;t熔融塑料進(jìn)入型腔的溫度,t=220;t塑件脫模溫度,t=60。10.2.4 高溫噴嘴向模具的接觸傳熱Q=3.6A(tt)=3.6406910140(22050)=348.63 KJ/h式中:A注塑機(jī)的噴嘴頭與模具的接觸面積(m),A=406910m(A=4R =43.1418=406910m,R=18mm注塑機(jī)噴嘴球半徑,);金屬傳熱系數(shù) =140(W/ m); t模具平均溫度 t=50 ;t熔融塑料進(jìn)入型腔的溫度 t=220。10.2.5 注射模通過(guò)自然冷卻傳導(dǎo)走的熱量(1)對(duì)流傳熱Q=hA( tt)=5.350.203(5020)=112KJ/h 式中:h傳熱系數(shù)(KJ/ m h ),h=5.35(h=4.187(0.25+)= 4.187(0.25+)= 5.35); A兩個(gè)分型面和四個(gè)側(cè)面的面積m2,A=0.203【A=(A)+ (A)n = 0.097+0.220.48=0.203,A=2BL=222022010=0.097 m; A=4BH =422025010=0.22m);B模具寬度m m,B=220; L模具長(zhǎng)度m m,L=220,開(kāi)模率n= =(60-31.5)/60=0.48】; t模具平均溫度,t=50;t室溫,t=20。 (2)輻射散發(fā)的熱量Q=20.8 A()()=20.80.220.8()()=128.7 KJ/h式中: 輻射率,一般表面=0.80.9;A=0.22; (3)工作臺(tái)散發(fā)的熱量Q=hA( tt)h= 5020.0484(5030)=485.94 KJ/h式中:傳熱系數(shù)h=502KJ/(mh); A 模具與工作臺(tái)的接觸面積m,A=0.0484;A=bl= 22022010=0.0484;b模具與工作臺(tái)接觸寬度m m,b=220;模具與工作臺(tái)接觸長(zhǎng)度m m,l=220。從計(jì)算的結(jié)果看,工作臺(tái)散發(fā)的熱量比塑料熔體釋放的熱量還多,這顯然是不正確的,說(shuō)明了Q的計(jì)算結(jié)果錯(cuò)誤。這是因?yàn)橛嘘P(guān)Q的計(jì)算參考資料很少,計(jì)算中有很多地方不規(guī)范。簡(jiǎn)單的計(jì)算以塑料熔體釋放出的熱量Q為總熱量,這些熱量全部由冷卻介質(zhì)帶走,這些熱量應(yīng)分別由凹模和型芯的冷卻系統(tǒng)帶走,實(shí)驗(yàn)表明,約1/3的熱量被凹模帶走,其余由型芯帶走。模具應(yīng)由冷卻系統(tǒng)帶走的熱量:Q=(Q+ Q)(Q+ Q+ Q)由于現(xiàn)在無(wú)法得到Q的正確值,所以計(jì)算以簡(jiǎn)單計(jì)算原則,取Q= Q。10.2.6 冷卻系統(tǒng)的計(jì)算型腔內(nèi)發(fā)出的總熱量(KJ/h):Q= n G Q=60 217.610300=3916.8(1)每次需要的注射量(KG)G=217.610(2)確定生產(chǎn)周期(S)t=60(3)塑料單位熱流量(KJ/h)Q=280350;取Q=300(4)每小時(shí)的注射次數(shù)n=60從計(jì)算結(jié)果看,Q與Q相差不多但不相等,這是因?yàn)镼涉及的因素較多,所以應(yīng)該應(yīng)該取Q來(lái)計(jì)算。 10.2.7 凹模冷卻系統(tǒng)的計(jì)算(1)凹模的冷卻水體積流量q= 763103/1034.187103(25-20)60= 0.6110 m/min式中: Q=1/3 Q=1/32289=763 KJ/h 水的密度10KG/m;C水的比熱容4.18710 J/KG;T水管出口溫度,T取25;T水管入口溫度,T取20。(2)冷卻水管的平均流速:V=40.6110/(3.140.0082)=12.14 m/min =0.202 m/s式中:d冷卻水管直徑,取d=8 mm 查冷卻水的穩(wěn)定湍流速度與流量得,管徑為8mm的冷卻水管所對(duì)應(yīng)的最低流速為1.66 m/s時(shí)才能達(dá)到湍流狀態(tài),故冷卻水在凹模冷卻管道中的流動(dòng)未達(dá)到湍流。(3)冷卻水管壁與水交界面的傳熱膜系數(shù)=7.6(10000.202)0.8/0.0080.2=1395 (w/mk)式中:是與冷卻介質(zhì)溫度有關(guān)的物理系數(shù),取7.6。(4)凹模冷卻管的傳熱面積A=763103/36001395(50-22.5)=5.5210 m式中:T模具與冷卻介質(zhì)平均溫度, T=27.5(T= T(T+T)/2 =50(20+25)/2 =22.5 )。(5)冷卻水孔總長(zhǎng)LL=763103/36003.147.6(10000.2020.008)0.8(50-22.5)=0.22m(6)模具上應(yīng)開(kāi)設(shè)的冷卻水孔圈數(shù) n=L/B=0.22(40.076) =0.72,所以冷卻水孔數(shù)位1根(如下圖)。式中:B為開(kāi)一圈冷卻水道時(shí)冷卻水道長(zhǎng)度。(7)冷卻水流動(dòng)狀態(tài)校核R=0.2020.008/(110)=161610式中:R雷諾數(shù);水的運(yùn)動(dòng)粘度,=110(m/s)。(8)進(jìn)出口溫差校核TT=763103/(9003.140.008210341870.202)=4.99預(yù)期溫差為5,校核的結(jié)果與預(yù)期的非常吻合,說(shuō)明實(shí)際應(yīng)用正確。第11章 模具工作原理說(shuō)明模具安裝在注射機(jī)上,定模部分固定在注射機(jī)的定模板上,動(dòng)模部分固定在注射機(jī)的動(dòng)模板上。合模后,注射機(jī)通過(guò)噴嘴將熔料經(jīng)流通注入型腔,經(jīng)保壓,冷卻后塑件成型。開(kāi)模時(shí)動(dòng)模部分隨動(dòng)板一起運(yùn)動(dòng)漸漸將分型面打開(kāi),當(dāng)分型面打開(kāi)完畢后,凝料從上模中脫出,在注塑機(jī)頂桿的作用下,頂桿通過(guò)推桿將塑件和凝料系統(tǒng)頂出,與此同時(shí)由于采用的是點(diǎn)澆口,在開(kāi)模的瞬間,塑件和凝料分開(kāi)。此時(shí)塑件自動(dòng)脫落,實(shí)現(xiàn)全自動(dòng)脫模。合模時(shí),隨著分型面的閉合復(fù)位桿將頂桿復(fù)位,模具閉合,等待下一次的動(dòng)作。38結(jié)論與展望經(jīng)過(guò)本次畢業(yè)設(shè)計(jì),學(xué)到了很多,更加系統(tǒng)地運(yùn)用了大學(xué)四年所學(xué)的知識(shí)。在對(duì)多孔塑料罩的設(shè)計(jì)過(guò)程中,本人查閱了很多資料,學(xué)習(xí)了之前未曾了解的一些知識(shí),開(kāi)闊了視野,對(duì)模具行業(yè)也有了新的認(rèn)識(shí)。在技能方面,通過(guò)對(duì)此塑件模具的設(shè)計(jì),本人更加熟練了對(duì)三維軟件和AutoCAD的運(yùn)用,期間,我遇到了不少困難,如由于對(duì)軟件不熟悉,設(shè)計(jì)初期沒(méi)有設(shè)置繪圖尺寸,直到導(dǎo)入模架才發(fā)現(xiàn)問(wèn)題;設(shè)計(jì)初期經(jīng)驗(yàn)不足,考慮不全面,沒(méi)有對(duì)工作資料進(jìn)行備份,由于失誤丟失前期工作等等。這些困難有專(zhuān)業(yè)性的也有非專(zhuān)業(yè)性的,解決專(zhuān)業(yè)性難題,讓本人更加深刻的掌握了模具設(shè)計(jì)的基礎(chǔ)知識(shí),而解決那些非專(zhuān)業(yè)性的難題,讓本人學(xué)會(huì)了做事縝密,鍛煉了自己的耐心和毅力。設(shè)計(jì)過(guò)程中查閱了大量的相關(guān)資料,我了解了模具行業(yè)當(dāng)前的現(xiàn)狀及發(fā)展形勢(shì),更是鞏固了以往所學(xué)的機(jī)械制圖、公差與配合、塑料成型工藝及其模具設(shè)計(jì)、模具制造工藝等相關(guān)知識(shí),把所有知識(shí)都結(jié)合到一起理解和運(yùn)用,讓我們對(duì)大學(xué)所學(xué)的全部知識(shí)進(jìn)行一次全面的整理、學(xué)會(huì)理論聯(lián)系實(shí)踐,為我們以后在社會(huì)中工作奠定了一個(gè)基礎(chǔ)。致謝在此感謝指導(dǎo)老師,以及身邊的同學(xué)悉心的教導(dǎo)和幫助。感謝老師給我方向性的建議,在設(shè)計(jì)過(guò)程中給予的幫助和支持!感謝謝幾位同學(xué)在模具設(shè)計(jì)上給予的建議和細(xì)節(jié)上的幫助,使我加深了對(duì)模具方面的認(rèn)識(shí),培養(yǎng)了我獨(dú)立思考題、解決問(wèn)題的能力。參考文獻(xiàn)1.塑料成型工藝與模具設(shè)計(jì)(第二版)屈華昌高等教育出版社,2006.72.注塑模具典型結(jié)構(gòu)100例將繼宏王效岳中國(guó)輕工業(yè)出版社,2000.63.我國(guó)塑料模具現(xiàn)狀與發(fā)展趨勢(shì)周永泰(中國(guó)模具工業(yè)協(xié)會(huì),北京100037)4.材料成型設(shè)備王衛(wèi)衛(wèi)機(jī)械工業(yè)出版社,2004.85.模具CAD/CAM(第二版)伊啟中機(jī)械工業(yè)出版社6.塑料模具技術(shù)手冊(cè)編寫(xiě)組塑料模具設(shè)計(jì)手冊(cè)M機(jī)械工業(yè)出版社,20057.注塑CAE及Moldflow軟件應(yīng)用張金標(biāo)機(jī)械工業(yè)出版社,2011.58.王華山:塑料注塑技術(shù)與實(shí)例,化學(xué)工業(yè)出版社,2005.109.朱光力、萬(wàn)金保等:塑料模具設(shè)計(jì),清華大學(xué)出版社,200310.劉昌祺:塑料模具設(shè)計(jì),機(jī)械工業(yè)出版社,1998.10
收藏