2019-2020年蘇教版高中數(shù)學(選修1-1)1.3《全稱量詞與存在量詞》(量詞)word教案.doc
《2019-2020年蘇教版高中數(shù)學(選修1-1)1.3《全稱量詞與存在量詞》(量詞)word教案.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年蘇教版高中數(shù)學(選修1-1)1.3《全稱量詞與存在量詞》(量詞)word教案.doc(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年蘇教版高中數(shù)學(選修1-1)1.3《全稱量詞與存在量詞》(量詞)word教案 (三)教學過程 學生探究過程:1.思考、分析 下列語句是命題嗎?假如是命題你能判斷它的真假嗎? (1)2x+1是整數(shù); (2) x>3; (3) 如果兩個三角形全等,那么它們的對應(yīng)邊相等; (4)平行于同一條直線的兩條直線互相平行; (5)海師附中今年所有高中一年級的學生數(shù)學課本都是采用人民教育出版社A版的教科書; (6)所有有中國國籍的人都是黃種人; (7)對所有的x∈R, x>3; (8)對任意一個x∈Z,2x+1是整數(shù)。 1. 推理、判斷 (讓學生自己表述) (1)、(2)不能判斷真假,不是命題。 (3)、(4)是命題且是真命題。 (5)-(8)如果是假,我們只要舉出一個反例就行。 注:對于(5)-(8)最好是引導學生將反例用命題的形式寫出來。因為這些命題的反例涉及到“存在量詞”“特稱命題”“全稱命題的否定”這些后續(xù)內(nèi)容。 (5)的真假就看命題:海師附中今年存在個別(部分)高一學生數(shù)學課本不是采用人民教育出版社A版的教科書;這個命題的真假,該命題為真,所以命題(5)為假; 命題(6)是假命題.事實上,存在一個(個別、部分)有中國國籍的人不是黃種人. 命題(7)是假命題.事實上,存在一個(個別、某些)實數(shù)(如x=2), x<3. (至少有一個x∈R, x≤3) 命題(8)是真命題。事實上不存在某個x∈Z,使2x+1不是整數(shù)。也可以說命題:存在某個x∈Z使2x+1不是整數(shù),是假命題. 3.發(fā)現(xiàn)、歸納 命題(5)-(8)跟命題(3)、(4)有些不同,它們用到 “所有的”“任意一個” 這樣的詞語,這些詞語一般在指定的范圍內(nèi)都表示整體或全部,這樣的詞叫做全稱量詞,用符號“"”表示,含有全稱量詞的命題,叫做全稱命題。命題(5)-(8)都是全稱命題。 通常將含有變量x的語句用p(x),q(x),r(x),……表示,變量x的取值范圍用M表示。那么全稱命題“對M中任意一個x,有p(x)成立”可用符號簡記為:"xM, p(x),讀做“對任意x屬于M,有p(x)成立”。 剛才在判斷命題(5)-(8)的真假的時候,我們還得出這樣一些命題: (5),存在個別高一學生數(shù)學課本不是采用人民教育出版社A版的教科書; (6),存在一個(個別、部分)有中國國籍的人不是黃種人. (7), 存在一個(個別、某些)實數(shù)x(如x=2),使x≤3.(至少有一個x∈R, x≤3) (8),不存在某個x∈Z使2x+1不是整數(shù). 這些命題用到了“存在一個”“至少有一個”這樣的詞語,這些詞語都是表示整體的一部分的詞叫做存在量詞。并用符號“”表示。含有存在量詞的命題叫做特稱命題(或存在命題)命題(5),-(8),都是特稱命題(存在命題). 特稱命題:“存在M中一個x,使p(x)成立”可以用符號簡記為:。讀做“存在一個x屬于M,使p(x)成立”. 全稱量詞相當于日常語言中“凡”,“所有”,“一切”,“任意一個”等;存在量詞相當于日常語言中“存在一個”,“有一個”,“有些”,“至少有一個”,“ 至多有一個”等. 4.鞏固練習 (1)下列全稱命題中,真命題是: A. 所有的素數(shù)是奇數(shù); B. ; C. D. (2)下列特稱命題中,假命題是: A. B.至少有一個能被2和3整除 C. 存在兩個相交平面垂直于同一直線 D.x2是有理數(shù). (3)已知:對恒成立,則a的取值范圍是 ; 變式:已知:對恒成立,則a的取值范圍是 ; (4)求函數(shù)的值域; 變式:已知:對方程有解,求a的取值范圍. 5.課外作業(yè)P29習題1.4A組1、2題: 6.教學反思: (1)判斷下列全稱命題的真假: ①末位是o的整數(shù),可以被5整除; ②線段的垂直平分線上的點到這條線段兩個端點的距離相等; ③負數(shù)的平方是正數(shù); ④梯形的對角線相等。 (2)判斷下列特稱命題的真假: ①有些實數(shù)是無限不循環(huán)小數(shù); ②有些三角形不是等腰三角形; ③有些菱形是正方形。 (3)探究: ①請課后探究命題(5),-(8),跟命題(5)-(8)分別有什么關(guān)系? ②請你自己寫出幾個全稱命題,并試著寫出它們的否命題.寫出幾個特稱命題,并試著寫出它們的否命題。- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 全稱量詞與存在量詞 2019 2020 年蘇教版 高中數(shù)學 選修 1.3 全稱 量詞 存在 word 教案
鏈接地址:http://m.appdesigncorp.com/p-6246994.html