2019-2020年北師大版選修2-1高中數(shù)學3.1《空間向量及其運算》word教案2.doc
《2019-2020年北師大版選修2-1高中數(shù)學3.1《空間向量及其運算》word教案2.doc》由會員分享,可在線閱讀,更多相關《2019-2020年北師大版選修2-1高中數(shù)學3.1《空間向量及其運算》word教案2.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年北師大版選修2-1高中數(shù)學3.1空間向量及其運算word教案2一、課題:空間向量及其運算(2) 二、教學目標:1理解共線向量定理和共面向量定理及它們的推論;2掌握空間直線、空間平面的向量參數(shù)方程和線段中點的向量公式三、教學重、難點:共線、共面定理及其應用四、教學過程:(一)復習:空間向量的概念及表示;(二)新課講解:1共線(平行)向量:如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量。讀作:平行于,記作:2共線向量定理:對空間任意兩個向量的充要條件是存在實數(shù),使(唯一)推論:如果為經(jīng)過已知點,且平行于已知向量的直線,那么對任一點,點在直線上的充要條件是存在實數(shù),滿足等式,其中向量叫做直線的方向向量。在上取,則式可化為或當時,點是線段的中點,此時和都叫空間直線的向量參數(shù)方程,是線段的中點公式3向量與平面平行:已知平面和向量,作,如果直線平行于或在內(nèi),那么我們說向量平行于平面,記作:通常我們把平行于同一平面的向量,叫做共面向量說明:空間任意的兩向量都是共面的4共面向量定理:如果兩個向量不共線,與向量共面的充要條件是存在實數(shù)使推論:空間一點位于平面內(nèi)的充分必要條件是存在有序?qū)崝?shù)對,使或?qū)臻g任一點,有上面式叫做平面的向量表達式(三)例題分析:例1已知三點不共線,對平面外任一點,滿足條件,試判斷:點與是否一定共面?解:由題意:,即,所以,點與共面說明:在用共面向量定理及其推論的充要條件進行向量共面判斷的時候,首先要選擇恰當?shù)某湟獥l件形式,然后對照形式將已知條件進行轉(zhuǎn)化運算【練習】:對空間任一點和不共線的三點,問滿足向量式 (其中)的四點是否共面?解:,點與點共面例2已知,從平面外一點引向量,(1)求證:四點共面;(2)平面平面解:(1)四邊形是平行四邊形,共面;(2),又,所以,平面平面五、課堂練習:課本第96頁練習第1、2、3題六、課堂小結(jié):1共線向量定理和共面向量定理及其推論;2空間直線、平面的向量參數(shù)方程和線段中點向量公式七、作業(yè):1已知兩個非零向量不共線,如果,求證:共面2已知,若,求實數(shù)的值。3如圖,分別為正方體的棱的中點,求證:(1)四點共面;(2)平面平面4已知分別是空間四邊形邊的中點,(1)用向量法證明:四點共面;(2)用向量法證明:平面- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 空間向量及其運算 2019 2020 北師大 選修 高中數(shù)學 3.1 空間 向量 及其 運算 word 教案
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-6162240.html