2019年高考數(shù)學(xué) 考點(diǎn)分析與突破性講練 專題10 導(dǎo)數(shù)的應(yīng)用 理.doc
《2019年高考數(shù)學(xué) 考點(diǎn)分析與突破性講練 專題10 導(dǎo)數(shù)的應(yīng)用 理.doc》由會員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué) 考點(diǎn)分析與突破性講練 專題10 導(dǎo)數(shù)的應(yīng)用 理.doc(14頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
專題10 導(dǎo)數(shù)的應(yīng)用 一、考綱要求: 1.了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間(其中多項(xiàng)式函數(shù)一般不超過三次); 2.了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;會用導(dǎo)數(shù)求函數(shù)的極大值、極小值(其中多項(xiàng)式函數(shù)一般不超過三次);會求閉區(qū)間上函數(shù)的最大值、最小值(其中多項(xiàng)式函數(shù)一般不超過三次); 3.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極(最)值,并會解決與之有關(guān)的方程(不等式)問題; 4.會利用導(dǎo)數(shù)解決某些簡單的實(shí)際問題. 二、概念掌握及解題上的注意點(diǎn): 1.在某區(qū)間內(nèi)f′(x)>0(f′(x)<0)是函數(shù)f(x)在此區(qū)間上為增(減)函數(shù)的充分不必要條件. 2.可導(dǎo)函數(shù)f(x)在(a,b)上是增(減)函數(shù)的充要條件是:對?x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子區(qū)間內(nèi)都不恒為零. 3.對于可導(dǎo)函數(shù)f(x),f′(x0)=0是函數(shù)f(x)在x=x0處有極值的必要不充分條件. 4.用導(dǎo)數(shù)證明函數(shù)fx在(a,b)內(nèi)的單調(diào)性的步驟 一求:求f′(x); 二定:確定f′(x))在(a,b)內(nèi)的符號; 三結(jié)論:作出結(jié)論:f′(x)>0時(shí)為增函數(shù);f′(x)<0時(shí)為減函數(shù). 5.研究含參數(shù)函數(shù)的單調(diào)性時(shí),需注意依據(jù)參數(shù)取值對不等式解集的影響進(jìn)行分類討論. (1)討論分以下四個(gè)方面 ①二次項(xiàng)系數(shù)討論,②根的有無討論,③根的大小討論,④根在不在定義域內(nèi)討論. (2)討論時(shí)要根據(jù)上面四種情況,找準(zhǔn)參數(shù)討論的分點(diǎn). (3)討論完必須寫綜述. 6.利用導(dǎo)數(shù)研究函數(shù)極值問題的一般流程 7.已知函數(shù)極值點(diǎn)和極值求參數(shù)的兩個(gè)要領(lǐng) (1)列式:根據(jù)極值點(diǎn)處導(dǎo)數(shù)為0和極值列方程組,利用待定系數(shù)法求解. (2)驗(yàn)證:因?yàn)橐稽c(diǎn)處的導(dǎo)數(shù)值等于零不是此點(diǎn)為極值點(diǎn)的充要條件,所以利用待定系數(shù)法求解后必須驗(yàn)證根的合理性 三、高考題例分析 例1(2018新課標(biāo)Ⅰ)已知函數(shù)f(x)=﹣x+alnx. (1)討論f(x)的單調(diào)性; (2)若f(x)存在兩個(gè)極值點(diǎn)x1,x2,證明:<a﹣2. 當(dāng)a>0時(shí),判別式△=a2﹣4, ①當(dāng)0<a≤4時(shí),△≤0,即g(x)>0,即f′(x)<0恒成立,此時(shí)函數(shù)f(x)在(0,+∞)上是減函數(shù), ②當(dāng)a>2時(shí),x,f′(x),f(x)的變化如下表: x (0,) (,) (,+∞) f′(x) ﹣ 0 + 0 ﹣ f(x) 遞減 遞增 遞減 綜上當(dāng)a≤2時(shí),f(x)在(0,+∞)上是減函數(shù), 當(dāng)a>2時(shí),在(0,),和(,+∞)上是減函數(shù), 則(,)上是增函數(shù). 設(shè)h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0, 求導(dǎo)得h′(x)=﹣1﹣=﹣=﹣<0, 則h(x)在(0,1)上單調(diào)遞減, ∴h(x)>h(1),即2lnx﹣x+>0, 故2lnx>x﹣, 則<a﹣2成立. 例2(2018新課標(biāo)Ⅱ)已知函數(shù)f(x)=ex﹣ax2. (1)若a=1,證明:當(dāng)x≥0時(shí),f(x)≥1; (2)若f(x)在(0,+∞)只有一個(gè)零點(diǎn),求a. 【解答】證明:(1)當(dāng)a=1時(shí),函數(shù)f(x)=ex﹣x2. 則f′(x)=ex﹣2x, 令g(x)=ex﹣2x,則g′(x)=ex﹣2, 令g′(x)=0,得x=ln2. 當(dāng)∈(0,ln2)時(shí),h′(x)<0,當(dāng)∈(ln2,+∞)時(shí),h′(x)>0, ∴h(x)≥h(ln2)=eln2﹣2?ln2=2﹣2ln2>0, ∴f(x)在[0,+∞)單調(diào)遞增,∴f(x)≥f(0)=1, 例3(2018新課標(biāo)Ⅲ))已知函數(shù)f(x)=(2+x+ax2)ln(1+x)﹣2x. (1)若a=0,證明:當(dāng)﹣1<x<0時(shí),f(x)<0;當(dāng)x>0時(shí),f(x)>0; (2)若x=0是f(x)的極大值點(diǎn),求a. 【解答】(1)證明:當(dāng)a=0時(shí),f(x)=(2+x)ln(1+x)﹣2x,(x>﹣1). ,, 可得x∈(﹣1,0)時(shí),f″(x)≤0,x∈(0,+∞)時(shí),f″(x)≥0 ∴f′(x)在(﹣1,0)遞減,在(0,+∞)遞增, ∴f′(x)≥f′(0)=0, ∴f(x)=(2+x)ln(1+x)﹣2x在(﹣1,+∞)上單調(diào)遞增,又f(0)=0. ∴當(dāng)﹣1<x<0時(shí),f(x)<0;當(dāng)x>0時(shí),f(x)>0. (2)解:由f(x)=(2+x+ax2)ln(1+x)﹣2x,得 f′(x)=(1+2ax)ln(1+x)+﹣2=, 令h(x)=ax2﹣x+(1+2ax)(1+x)ln(x+1), h′(x)=4ax+(4ax+2a+1)ln(x+1). 當(dāng)a≥0,x>0時(shí),h′(x)>0,h(x)單調(diào)遞增, ∴h(x)>h(0)=0,即f′(x)>0, ∴f(x)在(0,+∞)上單調(diào)遞增,故x=0不是f(x)的極大值點(diǎn),不符合題意. 當(dāng)a<0時(shí),h″(x)=8a+4aln(x+1)+, 顯然h″(x)單調(diào)遞減, ②若﹣<a<0,則h″(0)=1+6a>0,h″(e﹣1)=(2a﹣1)(1﹣e)<0, ∴h″(x)=0在(0,+∞)上有唯一一個(gè)零點(diǎn),設(shè)為x0, ∴當(dāng)0<x<x0時(shí),h″(x)>0,h′(x)單調(diào)遞增, ∴h′(x)>h′(0)=0,即f′(x)>0, 導(dǎo)數(shù)應(yīng)用練習(xí) 一、選擇題 1.函數(shù)f(x)=ex-x的單調(diào)遞增區(qū)間是( ) A.(-∞,1] B.[1,+∞) C.(-∞,0] D.[0,+∞) D 解析:∵f(x)=ex-x,∴f′(x)=ex-1,令f′(x)≥0,得ex-1≥0,即x≥0,故f(x)的單調(diào)遞增區(qū)間是[0,+∞). 2.已知函數(shù)f(x)=x3+ax+4,則“a>0”是“f(x)在R上單調(diào)遞增”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 A 解析:f′(x)=x2+a,當(dāng)a≥0時(shí),f′(x)≥0恒成立,故“a>0”是“f(x)在R上單調(diào)遞增”的充分不必要條件. 3.若冪函數(shù)f(x)的圖象過點(diǎn),則函數(shù)g(x)=exf(x)的單調(diào)遞減區(qū)間為( ) A.(-∞,0) B.(-∞,-2) C.(-2,-1) D.(-2,0) 4.已知函數(shù)y=f(x)的圖象是下列四個(gè)圖象之一,且其導(dǎo)函數(shù)y=f′(x)的圖象如圖2112所示,則該函數(shù)的圖象是( ) 圖2112 B 解析:由y=f′(x)的圖象知,y=f(x)在[-1,1]上為增函數(shù),且在區(qū)間[-1,0)上增長速度越來越快,而在區(qū)間(0,1]上增長速度越來越慢. 5.(2017安徽二模)已知f(x)=,則( ) A.f(2)>f(e)>f(3) B.f(3)>f(e)>f(2) C.f(3)>f(2)>f(e) D.f(e)>f(3)>f(2) 6.下列函數(shù)中,既是奇函數(shù)又存在極值的是( ) A.y=x3 B.y=ln(-x) C.y=xe-x D.y=x+ D 解析:由題可知,B,C選項(xiàng)中的函數(shù)不是奇函數(shù),A選項(xiàng)中,函數(shù)y=x3單調(diào)遞增(無極值),而D選項(xiàng)中的函數(shù)既為奇函數(shù)又存在極值. 7.(2016四川高考)已知a為函數(shù)f(x)=x3-12x的極小值點(diǎn),則a=( ) A.-4 B.-2 C.4 D.2 D 解析:由題意得f′(x)=3x2-12,令f′(x)=0得x=2,∴當(dāng)x<-2或x>2時(shí),f′(x)>0;當(dāng)-2- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學(xué) 考點(diǎn)分析與突破性講練 專題10 導(dǎo)數(shù)的應(yīng)用 2019 年高 數(shù)學(xué) 考點(diǎn) 分析 突破性 專題 10 導(dǎo)數(shù) 應(yīng)用
鏈接地址:http://m.appdesigncorp.com/p-6094407.html