《2019版九年級數(shù)學(xué)下冊 第二十六章 反比例函數(shù)試題 (新版)新人教版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019版九年級數(shù)學(xué)下冊 第二十六章 反比例函數(shù)試題 (新版)新人教版.doc(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第二十六章 反比例函數(shù)
1.確定反比例函數(shù)圖象性質(zhì)的方法:
對于反比例函數(shù)y=kx(k≠0,k是常數(shù)):
當(dāng)k>0時,在每個象限內(nèi),y隨x的增大而減小;
當(dāng)k<0時,在每個象限內(nèi),y隨x的增大而增大.
這是性質(zhì)的正向應(yīng)用.
如果在每個象限內(nèi),y隨x的增大而減小,則k>0;
如果在每個象限內(nèi),y隨x的增大而增大,則k<0.
這是性質(zhì)的逆向應(yīng)用.
【例1】若A(a,b),B(a-2,c)兩點均在函數(shù)y=1x的圖象上,且a<0,則b與c的大小關(guān)系為 ( )
A.b>c B.b
0,
所以a>a-2,
因為在每一象限內(nèi),y隨x的增大而減小,
所以b0,解不等式,得:k>1.而四個選項中只有B是符合要求的.
1.下列各點中,在函數(shù)y=-8x圖象上的是 ( )
A.(-2,4) B.(2,4)
C.(-2,-4) D.(8,1)
2.已知矩形的面積為10,長和寬分別為x和y,則y關(guān)于x的函數(shù)圖象大致
是 ( )
3.如圖是反比例函數(shù)y=kx(k為常數(shù),k≠0)的圖象,則一次函數(shù)y=kx-k的圖象大致是 ( )
4.如果點A(-2,y1),B(-1,y2),C(2,y3)都在反比例函數(shù)y=kx(k>0)的圖象上,那么,y1,y2,y3的大小關(guān)系是 ( )
A.y10)的圖象上,且x1=-x2,
則 ( )
A.y1y2 D.y1=-y2
6.已知反比例函數(shù)y=5-mx,當(dāng)x=2時,y=3.
(1)求m的值.
(2)當(dāng)3≤x≤6時,求函數(shù)值y的取值范圍.
2.確定反比例函數(shù)解析式的方法:
確定一個反比例函數(shù),就是要確定反比例函數(shù)解析式中的常數(shù)k.其基本步驟是:
(1)設(shè)出含有待定系數(shù)的函數(shù)解析式y(tǒng)=kx(k≠0).
(2)把已知條件(自變量與函數(shù)的對應(yīng)值)代入解析式得到關(guān)于系數(shù)k的一元一次方程.
(3)解方程,求出待定系數(shù)k.
(4)將k的值代回解析式.得到反比例函數(shù)解析式.
【例】已知反比例函數(shù)y=kx的圖象經(jīng)過點M(2,1).
(1)求該函數(shù)的解析式.
(2)當(dāng)20),該函數(shù)的圖象大致
是 ( )
2.將油箱注滿k升油后,轎車可行駛的總路程s(單位:千米)與平均耗油量a(單位:升/千米)之間是反比例函數(shù)關(guān)系s=ka(k是常數(shù),k≠0).已知某轎車油箱注滿油后,以平均耗油量為每千米耗油0.1升的速度行駛,可行駛700千米.
(1)求該轎車可行駛的總路程s與平均耗油量a之間的函數(shù)解析式.
(2)當(dāng)平均耗油量為0.08升/千米時,該轎車可以行駛多少千米?
4.確定點在反比例函數(shù)圖象上的方法:
(1)畫圖法.根據(jù)點的坐標(biāo)在直角坐標(biāo)系中描出點的位置,直觀判斷點是否在圖象上.
(2)計算法.反比例函數(shù)y=kx(k≠0,k是常數(shù))圖象上的點的坐標(biāo)有一條共同的性質(zhì),這就是,點的橫坐標(biāo)與縱坐標(biāo)的乘積是同一個定值,只要符合這個條件,就說點在這個函數(shù)的圖象上.
【例】下列四個點,在反比例函數(shù)y=6x圖象上的是 ( )
A.(1,-6) B.(2,4)
C.(3,-2) D.(-6,-1)
【標(biāo)準(zhǔn)解答】選D.因為y=6x,
所以常數(shù)k=6,
又因為在點(1,-6)中,橫坐標(biāo)與縱坐標(biāo)的乘積是-6,所以,該點不在y=6x的圖象上因此,排除A;
又因為在點(2,4)中,橫坐標(biāo)與縱坐標(biāo)的乘積是8,所以,該點不在y=6x的圖象上,因此排除B;
又因為在點(3,-2)中,橫坐標(biāo)與縱坐標(biāo)的乘積是-6,所以,該點不在y=6x的圖象上,因此排除C;
又因為在點(-6,-1)中,橫坐標(biāo)與縱坐標(biāo)的乘積是6,
所以該點在y=6x的圖象上.
若反比例函數(shù)的圖象過點(2,1),則這個函數(shù)的圖象一定過點 ( )
A.(2,-1)
B.(1,-2)
C.(-2,1)
D.(-2,-1)
5.與雙曲線有關(guān)的幾何圖形的面積:
利用反比例函數(shù)的圖象與矩形、正方形和直角三角形的面積之間的聯(lián)系,確定k的值和圖形的面積.
(1)利用反比例函數(shù)的性質(zhì)求矩形的面積
【例1】如圖,P(x,y)是反比例函數(shù)y=3x的圖象在第一象限分支上的一個動點,PB⊥y軸于點B,PA⊥x軸于點A,隨著自變量x的增大,矩形OAPB的面積 ( )
A.不變 B.增大
C.減小 D.無法確定
【標(biāo)準(zhǔn)解答】選A.本題考查的是反比例函數(shù)中點的坐標(biāo)的意義以及|k|的意義,根據(jù)題意可得S矩形AOBP=xy=k=3,始終保持不變.
(2)利用反比例函數(shù)的性質(zhì)求三角形的面積
【例2】如圖,雙曲線y=kx經(jīng)過點A(2,2)與點B(4,m),則△AOB的面積為 ( )
A.2 B.3 C.4 D.5
【標(biāo)準(zhǔn)解答】選B.將圖形補成長方形,△AOB的面積為長方形的面積減去三塊陰影部分面積,其中左上角與右下角兩塊面積相等.因為y=kx經(jīng)過點A(2,2),所以k=4.由點B(4,m),可得m=1,所以長方形右上角頂點橫坐標(biāo)為4,縱坐標(biāo)與點A(2,2)的縱坐標(biāo)相同.所以右上角的三角形的面積為1,左上角與右下角兩塊面積均為2,而長方形的面積為24=8,所以△AOB的面積為8-2-2-1=3.
(3)利用三角形的面積確定反比例函數(shù)解析式
【例3】雙曲線y1,y2在第一象限的圖象如圖,y1=4x,過y1上的任意一點A,作x軸的平行線交y2于B,交y軸于C,若S△AOB=1,則y2的解析式是 .
【標(biāo)準(zhǔn)解答】因為反比例函數(shù)y1=4x,所以S△AOC=2,又S△AOB=1,所以S△COB=3,所以反比例函數(shù)y2的解析式是y2=6x.
答案:y2=6x
1.如圖:點A在雙曲線y=kx上,AB⊥x軸于B,且△AOB的面積S△AOB=2,則k= .
2.如圖,反比例函數(shù)y=-6x在第二象限的圖象上有兩點A,B,它們橫坐標(biāo)分別為-1,-3,直線AB與x軸交于點C,則△AOC的面積為 ( )
A.8 B.10 C.12 D.24
3.如圖,過點O作直線與雙曲線y=kx(k≠0)交于A,B兩點,過點B作BC⊥x軸于點C,作BD⊥y軸于點D.在x軸,y軸上分別取點E,F,使點A,E,F在同一條直線上,且AE=AF.設(shè)圖中矩形ODBC的面積為S1,△EOF的面積為S2,則S1,S2的數(shù)量關(guān)系
是 ( )
A.S1=S2 B.2S1=S2
C.3S1=S2 D.4S1=S2
4.以正方形ABCD兩條對角線的交點O為坐標(biāo)原點,建立如圖所示的平面直角坐標(biāo)系,雙曲線y=3x經(jīng)過點D,則正方形ABCD的面積是 ( )
A.10 B.11 C.12 D.13
5.如圖,A,B是雙曲線y=kx上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若△ADO的面積為1,D為OB的中點,則k的值為 ( )
A.43 B.83 C.3 D.4
6.如圖,雙曲線y=kx(k>0)經(jīng)過△OAB的頂點A和OB的中點C,AB∥x軸,點A的坐標(biāo)是(2,3).
(1)確定k的值.
(2)若點D(3,m)在雙曲線上,求直線AD的解析式.
(3)計算△OAB的面積.
跟蹤訓(xùn)練答案解析
1.確定反比例函數(shù)圖象性質(zhì)的方法:
【跟蹤訓(xùn)練】
1.【解析】選A.∵反比例函數(shù)y=-8x中,k=-8,
∴只需把各點橫縱坐標(biāo)相乘,結(jié)果為-8的點在函數(shù)圖象上,四個選項中只有A選項符合.
2.【解析】選C.根據(jù)題意得:xy=10,
∴y=10x,
即y是x的反比例函數(shù),圖象是雙曲線,
∵10>0,x>0,
∴函數(shù)圖象是位于第一象限的曲線,故選C.
3.【解析】選B.由反比例函數(shù)的圖象在一、三象限可知k>0,所以y=kx-k應(yīng)過一、三、四象限,故選B.
4.【解析】選B.∵反比例函數(shù)y=kx,k>0,
∴其圖象在一、三象限,在每個象限內(nèi),y隨x的增大而減小.
∵A,B兩點在第三象限,
∴y20,∴y20)的圖象上,
∴y1=kx1,y2=kx2,
∵x1=-x2,
∴y1=kx1=-kx2,
∴y1=-y2.
6.【解析】(1)把x=2,y=3代入y=5-mx得到5-m=6,∴m=-1.
(2)當(dāng)x=3時,由y=6x得y=2;
x=6時,由y=6x得y=1.當(dāng)3≤x≤6時,y隨x的增大而減小,所以函數(shù)值y的范圍是1≤y≤2.
2.確定反比例函數(shù)解析式的方法:
【跟蹤訓(xùn)練】
1.【解析】設(shè)反比例函數(shù)的解析式是y=kx(k≠0,k是常數(shù)),
把x=1,y=2代入y=kx,得2=k1,
解得k=2,
所以反比例函數(shù)解析式是y=2x.
答案:y=2x
2.【解析】設(shè)經(jīng)過C點的反比例函數(shù)的解析式是y=kx(k≠0),設(shè)C(x,y).
∵四邊形OABC是平行四邊形,
∴BC∥OA,BC=OA;
∵A(4,0),B(3,3),
∴點C的縱坐標(biāo)是y=3,|3-x|=4(x<0),
∴x=-1,∴C(-1,3).
∵點C在反比例函數(shù)y=kx(k≠0)的圖象上,
∴3=k-1,解得:k=-3,
∴經(jīng)過C點的反比例函數(shù)的解析式是y=-3x.
答案:y=-3x
3.反比例函數(shù)解決實際問題的步驟:
【跟蹤訓(xùn)練】
1.【解析】選C.因為S與x的關(guān)系是反比例關(guān)系,而反比例函數(shù)的圖象是雙曲線,因為此處x>0,所以只是第一象限的一支,故選擇C.
2.【解析】(1)由題意得:a=0.1,s=700,
代入反比例函數(shù)關(guān)系s=ka中,
解得:k=sa=70,
所以函數(shù)解析式為s=70a.
(2)將a=0.08代入s=70a得:s=70a=700.08=875千米,
故該轎車可以行駛875米.
4.確定點在反比例函數(shù)圖象上的方法:
【跟蹤訓(xùn)練】
【解析】選D.把點的坐標(biāo)(2,1)代入反比例函數(shù)y=kx的解析式,得出k=2,∴y=2x,再將4個點的坐標(biāo)逐一代入反比例函數(shù)解析式中進行檢驗,A,B,C三個選項均不能滿足函數(shù)解析式,只有選項D滿足函數(shù)解析式,故選擇D.
5.與雙曲線有關(guān)的幾何圖形的面積:
【跟蹤訓(xùn)練】
1.【標(biāo)準(zhǔn)解答】∵反比例函數(shù)的圖象在第二、四象限,∴k<0,∵S△AOB=2,
∴|k|=4,∴k=-4.
答案:-4
2.【解析】選C.∵反比例函數(shù)y=-6x在第二象限的圖象上有兩點A,B,它們的橫坐標(biāo)分別為-1,-3,
∴x=-1,y=6;x=-3,y=2,
∴A(-1,6),B(-3,2).
設(shè)直線AB的解析式為y=kx+b,則-k+b=6,-3k+b=2.解得k=2,b=8.
解得y=2x+8,
∴y=0時,x=-4,∴CO=4,
∴△AOC的面積為1264=12.
3.【解析】選B.設(shè)A點坐標(biāo)為(m,n),
過點O的直線與雙曲線y=kx交于A,B兩點,則A,B兩點關(guān)于原點對稱,則B的坐標(biāo)為(-m,-n);
矩形OCBD中,易得OD=-n,OC=m;則S1=-mn;
在Rt△EOF中,AE=AF,故A為EF中點,
由中位線的性質(zhì)可得OF=-2n,OE=2m;
則S2=12OFOE=-2mn;
故2S1=S2.
4.【解析】選C.∵正方形ABCD兩條對角線的交點O為坐標(biāo)原點,∴可設(shè)D(a,a),
∵雙曲線y=3x經(jīng)過點D,
∴a2=3,∴a=3,
∵點D在第一象限,∴a=3,
∴正方形的邊長為23,
∴正方形的面積是(23)2=12.
5.【解析】選B.過點B作BE⊥x軸于點E,
∵D為OB的中點,
∴CD是△OBE的中位線,即CD=12BE.
設(shè)Ax,kx,則B2x,k2x,CD=k4x,AD=kx-k4x,∵△ADO的面積為1,
∴12ADOC=1,12kx-k4xx=1,解得k=83.故選B.
6.【解析】(1)將點A(2,3)代入解析式y(tǒng)=kx,即得k=6.
(2)將x=3代入y=6x,得m=2,所以點D的坐標(biāo)是(3,2).設(shè)直線AD的解析式為y=k2x+b,將點A(2,3),D(3,2)代入y=k2x+b,得3=2k2+b,2=3k2+b.
解得k2=-1,b=5,所以直線AD的解析為y=-x+5.
(3)過點C作CN垂直于y軸于點N,延長BA交y軸于點M,因為AB平行于x軸,所以BM垂直于y軸,所以BM平行于CN,所以△OCN∽△OBM,因為C是OB的中點,所以S△OCNS△OBM=122,因為點A,C都在雙曲線y=6x上,所以S△OAM=S△OCN=3.由33+S△OAB=14,解得S△OAB=9,所以三角形OAB的面積是9.
鏈接地址:http://m.appdesigncorp.com/p-5870998.html