2019年高考數(shù)學總復習 第二部分 高考22題各個擊破 5.3 立體幾何大題課件 文.ppt
《2019年高考數(shù)學總復習 第二部分 高考22題各個擊破 5.3 立體幾何大題課件 文.ppt》由會員分享,可在線閱讀,更多相關《2019年高考數(shù)學總復習 第二部分 高考22題各個擊破 5.3 立體幾何大題課件 文.ppt(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
5 3立體幾何大題 1 證明線線平行和線線垂直的常用方法 1 證明線線平行常用的方法 利用平行公理 即證兩直線同時和第三條直線平行 利用平行四邊形進行平行轉換 利用三角形的中位線定理證線線平行 利用線面平行 面面平行的性質定理進行平行轉換 2 證明線線垂直常用的方法 利用等腰三角形底邊上的中線即高線的性質 勾股定理 線面垂直的性質 即要證兩直線垂直 只需證明一直線垂直于另一直線所在的平面即可 即l a l a 2 垂直 平行關系證明中應用轉化與化歸思想的常見類型 1 證明線面 面面平行 需轉化為證明線線平行 2 證明線面垂直 需轉化為證明線線垂直 3 證明線線垂直 需轉化為證明線面垂直 4 證明面面垂直 需轉化為證明線面垂直 進而轉化為證明線線垂直 3 求幾何體的表面積或體積 1 對于規(guī)則幾何體 可直接利用公式計算 對于某些三棱錐 有時可采用等體積轉換法求解 2 對于不規(guī)則幾何體 可采用割補法求解 3 求解旋轉體的表面積和體積時 注意圓柱的軸截面是矩形 圓錐的軸截面是等腰三角形 圓臺的軸截面是等腰梯形的應用 4 解決平面圖形的翻折問題 關鍵是抓住平面圖形翻折前后的不變性 即兩條直線的平行與垂直關系以及相關線段的長度 角度等的不變性- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019年高考數(shù)學總復習 第二部分 高考22題各個擊破 5.3 立體幾何大題課件 2019 年高 數(shù)學 復習 第二 部分 高考 22 各個擊破 立體幾何 課件
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-5702127.html