2019年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 思想方法研析指導(dǎo) 思想方法訓(xùn)練2 分類討論思想 文.doc
《2019年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 思想方法研析指導(dǎo) 思想方法訓(xùn)練2 分類討論思想 文.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 思想方法研析指導(dǎo) 思想方法訓(xùn)練2 分類討論思想 文.doc(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
思想方法訓(xùn)練2分類討論思想一、能力突破訓(xùn)練1.已知函數(shù)f(x)=-x2+ax,x1,2ax-5,x1,若存在x1,x2R,且x1x2,使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是()A.(-,2)B.(-,4)C.2,4D.(2,+)2.在ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若b2+c2-a2=3bc,且b=3a,則下列關(guān)系一定不成立的是()A.a=cB.b=cC.2a=cD.a2+b2=c23.若a0,且a1,p=loga(a3+1),q=loga(a2+1),則p,q的大小關(guān)系是()A.p=qB.pqD.當(dāng)a1時(shí),pq;當(dāng)0a1時(shí),p0,且x1,則函數(shù)y=lg x+logx10的值域?yàn)?)A.RB.2,+)C.(-,-2D.(-,-22,+)7.設(shè)Sn是等比數(shù)列an的前n項(xiàng)和,S3,S9,S6成等差數(shù)列,且a2+a5=2am,則m等于()A.6B.7C.8D.108.已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,AB=BC=CA=3,SA=SB=SC,球心O到平面ABC的距離為1,則SA與平面ABC所成角的大小為()A.30B.60C.30或60D.45或609.已知函數(shù)y=ax(a0,且a1)在區(qū)間1,2上的最大值比最小值大,則a的值是.10.已知函數(shù)f(x)=|ln x|,g(x)=0,01,則方程|f(x)+g(x)|=1實(shí)根的個(gè)數(shù)為.11.已知函數(shù)f(x)=2asin2x-23asin xcos x+a+b(a0)的定義域?yàn)?,2,值域?yàn)?5,1,求常數(shù)a,b的值.12.設(shè)a0,函數(shù)f(x)= x2-(a+1)x+a(1+ln x).(1)求曲線y=f(x)在(2,f(2)處與直線y=-x+1垂直的切線方程;(2)求函數(shù)f(x)的極值.二、思維提升訓(xùn)練13.若直線l過點(diǎn)P-3,-32且被圓x2+y2=25截得的弦長(zhǎng)是8,則直線l的方程為()A.3x+4y+15=0B.x=-3或y=-32C.x=-3D.x=-3或3x+4y+15=014.已知函數(shù)f(x)=|x|,xm,x2-2mx+4m,xm,其中m0.若存在實(shí)數(shù)b,使得關(guān)于x的方程f(x)=b有三個(gè)不同的根,則m的取值范圍是.15.若a為實(shí)數(shù),函數(shù)f(x)=|x2-ax|在區(qū)間0,1上的最大值記為g(a),則當(dāng)a=時(shí),g(a)的值最小.16.已知函數(shù)f (x)=ax2-2x(0x1),求函數(shù)f(x)的最小值.17.已知函數(shù)f(x)=aln x+x2(a為實(shí)數(shù)).(1)求函數(shù)f(x)在區(qū)間1,e上的最小值及相應(yīng)的x值;(2)若存在x1,e,使得f(x)(a+2)x成立,求實(shí)數(shù)a的取值范圍.思想方法訓(xùn)練2分類討論思想一、能力突破訓(xùn)練1.B解析 當(dāng)-a-21時(shí),顯然滿足條件,即a2a-5,即2a4.綜上知,a4,故選B.2.B解析 在ABC中,由余弦定理得cos A=b2+c2-a22bc=3bc2bc=32,則A=6.又b=3a,由正弦定理,得sin B=3sin A=32,則B=3或B=23.當(dāng)B=3時(shí),ABC為直角三角形,選項(xiàng)C,D成立;當(dāng)B=23時(shí),ABC為等腰三角形,選項(xiàng)A成立,故選B.3.C解析 當(dāng)0a1時(shí),y=ax和y=logax在其定義域上均為減函數(shù),a3+1loga(a2+1),即pq.當(dāng)a1時(shí),y=ax和y=logax在其定義域上均為增函數(shù),a3+1a2+1,loga(a3+1)loga(a2+1),即pq.綜上可得pq.4.C解析 當(dāng)焦點(diǎn)在x軸上時(shí),ba=34,此時(shí)離心率e=ca=54;當(dāng)焦點(diǎn)在y軸上時(shí),ab=34,此時(shí)離心率e=ca=53,故選C.5.C解析 不妨設(shè)|AB|=2,以AB中點(diǎn)O為原點(diǎn),AB所在直線為x軸建立平面直角坐標(biāo)系xOy,則A(-1,0),B(1,0),設(shè)M(x,y),則N(x,0),MN=(0,-y),AN=(x+1,0),NB=(1-x,0),代入已知式子得x2+y2=,當(dāng)=1時(shí),曲線為A;當(dāng)=2時(shí),曲線為B;當(dāng)1時(shí),y=lg x+logx10=lg x+1lgx2lgx1lgx=2;當(dāng)0x1時(shí),y=ax在區(qū)間1,2上遞增,故a2-a=,得a=;當(dāng)0a1時(shí),y=ax在區(qū)間1,2上遞減,故a-a2=,得a=.故a=或a=.10.4解析 f(x)=-lnx,01,g(x)=0,0x1,2-x2,1x2,x2-6,x2.(1)當(dāng)0x1時(shí),方程化為|-ln x+0|=1,解得x=1e或x=e(舍去).所以此時(shí)方程只有一個(gè)實(shí)根1e.(2)當(dāng)1x2時(shí),方程可化為|ln x+2-x2|=1.設(shè)h(x)=ln x+2-x2,h(x)=1x-2x=1-2x2x.因?yàn)?x2,所以h(x)=1-2x2x0,即函數(shù)h(x)在區(qū)間(1,2)上單調(diào)遞減.因?yàn)閔(1)=ln 1+2-12=1,h(2)=ln 2+2-22=ln 2-2,所以h(x)(ln 2-2,1).又ln 2-2-1,故當(dāng)1x2時(shí)方程只有一解.(3)當(dāng)x2時(shí),方程可化為|ln x+x2-6|=1.記函數(shù)p(x)=ln x+x2-6,顯然p(x)在區(qū)間2,+)上單調(diào)遞增.故p(x)p(2)=ln 2+22-6=ln 2-21,所以方程|p(x)|=1有兩個(gè)解,即方程|ln x+x2-6|=1有兩個(gè)解.綜上可知,方程|f(x)+g(x)|=1共有4個(gè)實(shí)根.11.解 f(x)=a(1-cos 2x)-3asin 2x+a+b=-2asin2x+6+2a+b.x0,2,2x+66,76,-12sin2x+61.因此,由f(x)的值域?yàn)?5,1,可得a0,-2a-12+2a+b=1,-2a1+2a+b=-5或a0,f(x)=x-(a+1)+.因?yàn)榍€y=f(x)在(2,f(2)處切線的斜率為1,所以f(2)=1,即2-(a+1)+a2=1,所以a=0,此時(shí)f(2)=2-2=0,故曲線f(x)在(2,f(2)處的切線方程為x-y-2=0.(2)f(x)=x-(a+1)+ax=x2-(a+1)x+ax=(x-1)(x-a)x.當(dāng)0a0,函數(shù)f(x)單調(diào)遞增;若x(a,1),則f(x)0,函數(shù)f(x)單調(diào)遞增.此時(shí)x=a是f(x)的極大值點(diǎn),x=1是f(x)的極小值點(diǎn),函數(shù)f(x)的極大值是f(a)=-12a2+aln a,極小值是f(1)=-12.當(dāng)a=1時(shí),若x(0,1),則f(x)0,若x=1,則f(x)=0,若x(1,+),則f(x)0,所以函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,此時(shí)f(x)沒有極值點(diǎn),也無極值.當(dāng)a1時(shí),若x(0,1),則f(x)0,函數(shù)f(x)單調(diào)遞增;若x(1,a),則f(x)0,函數(shù)f(x)單調(diào)遞增,此時(shí)x=1是f(x)的極大值點(diǎn),x=a是f(x)的極小值點(diǎn),函數(shù)f(x)的極大值是f(1)=-12,極小值是f(a)=-12a2+aln a.綜上,當(dāng)0a1時(shí),f(x)的極大值是-12,極小值是-12a2+aln a.二、思維提升訓(xùn)練13.D解析 若直線l的斜率不存在,則該直線的方程為x=-3,代入圓的方程解得y=4,故直線l被圓截得的弦長(zhǎng)為8,滿足條件;若直線l的斜率存在,不妨設(shè)直線l的方程為y+=k(x+3),即kx-y+3k-=0,因?yàn)橹本€l被圓截得的弦長(zhǎng)為8,故半弦長(zhǎng)為4,又圓的半徑為5,則圓心(0,0)到直線l的距離為52-42=3k-32k2+1,解得k=-,此時(shí)直線l的方程為3x+4y+15=0.14.(3,+)解析 當(dāng)xm時(shí),f(x)=x2-2mx+4m=(x-m)2+4m-m2.其所在拋物線的頂點(diǎn)為P(m,4m-m2).函數(shù)y=f(x)的圖象與直線x=m的交點(diǎn)為Q(m,m).(1)點(diǎn)P在點(diǎn)Q的上方或與Q點(diǎn)重合時(shí),即4m-m2m,也就是m(m-3)0時(shí),解得0m3,又因?yàn)閙0,所以0m3.此時(shí)函數(shù)的圖象如圖所示(實(shí)線部分),顯然此時(shí)直線y=b與函數(shù)圖象最多只有兩個(gè)交點(diǎn),不合題意;(2)點(diǎn)P在點(diǎn)Q的下方時(shí),即4m-m20時(shí),解得m3,又因?yàn)閙0,所以m3.此時(shí)函數(shù)的圖象如圖所示(實(shí)線部分),顯然此時(shí)直線y=b與函數(shù)圖象最多可有三個(gè)交點(diǎn),符合題意.所以m3.15.22-2解析 當(dāng)a0時(shí),在區(qū)間0,1上,f(x)=|x2-ax|=x2-ax,且在區(qū)間0,1上為增函數(shù),當(dāng)x=1時(shí),f(x)取得的最大值為f(1)=1-a;當(dāng)0a1時(shí),f(x)=-x2+ax,0xa,x2-ax,ax1在區(qū)間0,a2內(nèi)遞增,在區(qū)間a2,a上遞減,在區(qū)間(a,1上遞增,且fa2=a24,f(1)=1-a,a24-(1-a)=14(a2+4a-4),當(dāng)0a22-2時(shí),a241-a.當(dāng)22-2a1時(shí),a241-a;當(dāng)1a2時(shí),f(x)=-x2+ax在區(qū)間0,a2上遞增,在區(qū)間a2,1上遞減,當(dāng)x=a2時(shí),f(x)取得最大值fa2=a24;當(dāng)a2時(shí),f(x)=-x2+ax在區(qū)間0,1上遞增,當(dāng)x=1時(shí),f(x)取得最大值f(1)=a-1.則g(a)=1-a,a22-2,a24,22-2a0時(shí),函數(shù)f(x)=ax2-2x的圖象的開口方向向上,且對(duì)稱軸為直線x=1a.當(dāng)1a1,即a1時(shí),f(x)=ax2-2x的圖象對(duì)稱軸在區(qū)間0,1內(nèi),f(x)在區(qū)間0,1a上單調(diào)遞減,在區(qū)間1a,1上單調(diào)遞增,f(x)min=f1a=1a-2a=-1a.當(dāng)1a1,即0a1時(shí),函數(shù)f(x)=ax2-2x的圖象對(duì)稱軸在區(qū)間0,1的右側(cè),f(x)在0,1上單調(diào)遞減,f(x)min=f(1)=a-2.(3)當(dāng)a0時(shí),函數(shù)f(x)=ax2-2x的圖象的開口方向向下,且對(duì)稱軸x=1a0,在y軸的左側(cè),函數(shù)f(x)=ax2-2x在區(qū)間0,1上單調(diào)遞減,f(x)min=f(1)=a-2.綜上所述,f(x)min=a-2,a1,-1a,a1.17.解 (1)f(x)=aln x+x2的定義域?yàn)?0,+),f(x)= +2x=2x2+ax.當(dāng)x1,e時(shí),2x22,2e2.若a-2,則f(x)在區(qū)間1,e上非負(fù)(僅當(dāng)a=-2,x=1時(shí),f(x)=0),故f(x)在區(qū)間1,e上單調(diào)遞增,此時(shí)f(x)min=f(1)=1;若-2e2a-2,令f(x)0,解得1x0,解得-a2xe,此時(shí)f(x)單調(diào)遞增,f(x)min=f-a2=a2ln-a2-a2;若a-2e2,f(x)在區(qū)間1,e上非正(僅當(dāng)a=-2e2,x=e時(shí),f(x)=0),故f(x)在區(qū)間1,e上單調(diào)遞減,此時(shí)f(x)min=f(e)=a+e2.綜上所述,當(dāng)a-2時(shí),f(x)min=1,相應(yīng)的x=1;當(dāng)-2e2a-2時(shí),f(x)min=a2ln-a2-a2,相應(yīng)的x=-a2;當(dāng)a-2e2時(shí),f(x)min=a+e2,相應(yīng)的x=e.(2)不等式f(x)(a+2)x可化為a(x-ln x)x2-2x.x1,e,ln x1x且等號(hào)不能同時(shí)成立,ln x0,因而ax2-2xx-lnx,x1,e,令g(x)=x2-2xx-lnx(x1,e),則g(x)=(x-1)(x+2-2lnx)(x-lnx)2,當(dāng)x1,e時(shí),x-10,ln x1,x+2-2ln x0,從而g(x)0(僅當(dāng)x=1時(shí)取等號(hào)),g(x)在區(qū)間1,e上是增函數(shù),故g(x)min=g(1)=-1,實(shí)數(shù)a的取值范圍是-1,+).- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 思想方法研析指導(dǎo) 思想方法訓(xùn)練2 分類討論思想 2019 年高 數(shù)學(xué) 二輪 復(fù)習(xí) 第一 部分 思想 方法 研析 指導(dǎo) 訓(xùn)練 分類 討論
鏈接地址:http://m.appdesigncorp.com/p-5477753.html