高中數(shù)學(xué) 第二章 推理與證明 2.3 數(shù)學(xué)歸納法學(xué)案 蘇教版選修2-2.doc
《高中數(shù)學(xué) 第二章 推理與證明 2.3 數(shù)學(xué)歸納法學(xué)案 蘇教版選修2-2.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高中數(shù)學(xué) 第二章 推理與證明 2.3 數(shù)學(xué)歸納法學(xué)案 蘇教版選修2-2.doc(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2.3 數(shù)學(xué)歸納法 學(xué)習(xí)目標(biāo) 重點(diǎn)難點(diǎn) 1.了解數(shù)學(xué)歸納法的原理. 2.能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題. 重點(diǎn):數(shù)學(xué)歸納法的原理. 難點(diǎn):數(shù)學(xué)歸納法的應(yīng)用. 數(shù)學(xué)歸納法 一般地,對(duì)于某些與正整數(shù)有關(guān)的數(shù)學(xué)命題,我們有__________公理: 如果(1)當(dāng)n取第一個(gè)值__________時(shí)結(jié)論正確; (2)假設(shè)當(dāng)________(k∈N*,且k≥n0)時(shí)__________,證明當(dāng)__________時(shí)結(jié)論也正確. 那么,命題對(duì)于從n0開(kāi)始的所有正整數(shù)n都成立. 預(yù)習(xí)交流1 做一做:用數(shù)學(xué)歸納法證明1+2+3+…+n=(n∈N*),從k到k+1時(shí),左端增加的式子為_(kāi)_______. 預(yù)習(xí)交流2 用數(shù)學(xué)歸納法應(yīng)注意哪些步驟? 在預(yù)習(xí)中還有哪些問(wèn)題需要你在聽(tīng)課時(shí)加以關(guān)注?請(qǐng)?jiān)谙铝斜砀裰凶鰝€(gè)備忘吧! 我的學(xué)困點(diǎn) 我的學(xué)疑點(diǎn) 答案: 預(yù)習(xí)導(dǎo)引 數(shù)學(xué)歸納法 (1)n0(例如n0=1,2等) (2)n=k 結(jié)論正確 n=k+1 預(yù)習(xí)交流1:提示:k+1 預(yù)習(xí)交流2:提示:兩個(gè)步驟缺一不可,只完成步驟(1)而缺少步驟(2),就作出判斷可能得出不正確的結(jié)論.因?yàn)閱慰坎襟E(1)無(wú)法遞推下去,即n取n0以后的數(shù)時(shí)命題是否正確,我們無(wú)法判定.同樣,只有步驟(2)而缺少步驟(1),也可能得出不正確的結(jié)論,缺少步驟(1)這個(gè)基礎(chǔ),假設(shè)就失去了成立的前提,步驟(2)也就沒(méi)有意義了. 用數(shù)學(xué)歸納法證明有關(guān)問(wèn)題的關(guān)鍵在于第二步,即n=k+1時(shí)為什么成立.n=k+1時(shí)成立是利用假設(shè)n=k時(shí)成立,根據(jù)有關(guān)的定理、定義、公式、性質(zhì)等數(shù)學(xué)結(jié)論推證出n=k+1時(shí)成立,而不是直接代入,否則n=k+1時(shí)也成假設(shè)了,命題并沒(méi)有得到證明. 用數(shù)學(xué)歸納法可證明有關(guān)的正整數(shù)問(wèn)題,但并不是所有的正整數(shù)問(wèn)題都可用數(shù)學(xué)歸納法證明,學(xué)習(xí)時(shí)要具體問(wèn)題具體分析. 一、用數(shù)學(xué)歸納法證明等式或不等式 證明12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1). 思路分析:用數(shù)學(xué)歸納法證明等式時(shí)要注意等式兩邊的項(xiàng)數(shù)隨n怎樣變化,即由n=k到n=k+1時(shí),左右兩邊各增添哪些項(xiàng). 用數(shù)學(xué)歸納法證明: ++…+=++…+. 可用數(shù)學(xué)歸納法來(lái)證明關(guān)于自然數(shù)n的恒等式,證明時(shí)兩步缺一不可,第一步必須驗(yàn)證,證明n=k+1時(shí)成立,必須用到假設(shè)n=k成立的結(jié)論. 二、用數(shù)學(xué)歸納法證明幾何問(wèn)題 有n個(gè)圓,其中每?jī)蓚€(gè)圓都相交于兩點(diǎn),并且每三個(gè)圓都不相交于同一點(diǎn),求證:這n個(gè)圓把平面分成f(n)=n2-n+2個(gè)部分. 思路分析:由k到k+1時(shí),研究第k+1個(gè)圓與其他k個(gè)圓的交點(diǎn)個(gè)數(shù)問(wèn)題. 證明:凸n邊形的對(duì)角線(xiàn)的條數(shù)f(n)=n(n-3)(n≥4). (1)幾何問(wèn)題常常是先探索出滿(mǎn)足條件的公式,然后加以證明,探索的方法是由特殊猜出一般結(jié)論. (2)關(guān)鍵步驟的證明可以先用f(k+1)-f(k)得出結(jié)果,再結(jié)合圖形給予嚴(yán)謹(jǐn)?shù)恼f(shuō)明. (3)幾何問(wèn)題的證明一要注意數(shù)形結(jié)合,二要注意要有必要的文字說(shuō)明. 三、歸納—猜想—證明 已知等差數(shù)列{an},等比數(shù)列{bn},且a1=b1,a2=b2(a1≠a2),an>0(n∈N*). (1)比較a3與b3,a4與b4的大小,并猜想an與bn(n≥3)的大小關(guān)系; (2)用數(shù)學(xué)歸納法證明猜想的正確性. 思路分析:數(shù)列的通項(xiàng)公式應(yīng)注意由n=k到n=k+1時(shí)的變化情況,增加哪些項(xiàng)是難點(diǎn),注意觀(guān)察尋找規(guī)律. 數(shù)列{an}滿(mǎn)足Sn=2n-an,n∈N*. (1)計(jì)算a1,a2,a3,a4,并由此猜想通項(xiàng)公式an; (2)用數(shù)學(xué)歸納法證明(1)中的猜想. 觀(guān)察、歸納、猜想、證明是一個(gè)完整的思維過(guò)程,既需要探求和發(fā)現(xiàn)結(jié)論,又需要證明所得結(jié)論的正確性,是一種十分重要的思維方法.觀(guān)察特殊事例時(shí)要細(xì),要注意所研討特殊事例的特征及相互關(guān)系,關(guān)系不明時(shí)應(yīng)適當(dāng)變形,由觀(guān)察、歸納、猜想得到的結(jié)論,可能是正確的也可能是錯(cuò)誤的,需要由數(shù)學(xué)歸納法證明. 1.設(shè)f(n)=1++++…+,則f(k+1)-f(k)=________. 2.用數(shù)學(xué)歸納法證明1+a+a2+…+an+1=(n∈N*,a≠1),在驗(yàn)證n=1成立時(shí),左邊所得的項(xiàng)為_(kāi)_________. 3.已知數(shù)列,,,…,,…的前n項(xiàng)和為Sn,計(jì)算得S1=,S2=,S3=,…,由此可猜測(cè)Sn=________. 4.平面內(nèi)原有k條直線(xiàn),它們的交點(diǎn)個(gè)數(shù)為f(k),則增加一條直線(xiàn)后,它們的交點(diǎn)個(gè)數(shù)最多為_(kāi)_______. 5.求證:++…+>(n≥2,n∈N*). 提示:用最精練的語(yǔ)言把你當(dāng)堂掌握的核心知識(shí)的精華部分和基本技能的要領(lǐng)部分寫(xiě)下來(lái)并進(jìn)行識(shí)記. 知識(shí)精華 技能要領(lǐng) 答案: 活動(dòng)與探究1:證明:(1)當(dāng)n=1時(shí),左邊=12-22=-3, 右邊=-1(21+1)=-3, ∴左邊=右邊,等式成立. (2)假設(shè)當(dāng)n=k時(shí)等式成立, 即12-22+32-42+…+(2k-1)2-(2k)2=-k(2k+1)成立. 則當(dāng)n=k+1時(shí), 左邊=12-22+32-42+…+(2k-1)2-(2k)2+[2(k+1)-1]2-[2(k+1)]2 =-k(2k+1)+(2k+1)2-(2k+2)2 =(2k+1)(k+1)-4(k+1)2 =(k+1)[2k+1-4(k+1)]=(k+1)(-2k-3) =-(k+1)[2(k+1)+1]=右邊, ∴當(dāng)n=k+1時(shí),等式成立. 由(1)(2)可知對(duì)于任意正整數(shù)n,等式都成立. 遷移與應(yīng)用: 證明:(1)當(dāng)n=1時(shí),左邊==,右邊=,等式成立. (2)假設(shè)當(dāng)n=k時(shí),等式成立,即++…+=++…+, 則當(dāng)n=k+1時(shí),++…++ =++…++ =++…+++=++…+++ =++…++, 即當(dāng)n=k+1時(shí),等式成立. 根據(jù)(1)(2)可知,對(duì)一切n∈N*,等式成立. 活動(dòng)與探究2:證明:(1)當(dāng)n=1時(shí),即一個(gè)圓把平面分成2個(gè)部分f(1)=2,又n=1時(shí),n2-n+2=2, ∴命題成立. (2)假設(shè)當(dāng)n=k(k≥1)時(shí),命題成立,即k個(gè)圓把平面分成f(k)=k2-k+2個(gè)部分,那么設(shè)第k+1個(gè)圓記作⊙O,由題意,它與k個(gè)圓中每個(gè)圓交于兩點(diǎn),又無(wú)三圓交于同一點(diǎn),于是它與其他k個(gè)圓相交于2k個(gè)點(diǎn).把⊙O分成2k條弧,而每條弧把原區(qū)域分成2部分,因此這個(gè)平面的總區(qū)域增加2k個(gè)部分,即f(k+1)=k2-k+2+2k=(k+1)2-(k+1)+2.即n=k+1時(shí)命題成立. 由(1)(2)可知,對(duì)任何n∈N*命題均成立. 遷移與應(yīng)用: 證明:(1)當(dāng)n=4時(shí),f(4)=4(4-3)=2, 四邊形有兩條對(duì)角線(xiàn),命題成立. (2)假設(shè)當(dāng)n=k時(shí)命題成立,即凸k邊形的對(duì)角線(xiàn)的條數(shù)f(k)=k(k-3)(k≥4), 當(dāng)n=k+1時(shí),凸k+1邊形是在k邊形基礎(chǔ)上增加了一邊,增加了一個(gè)頂點(diǎn)Ak+1,增加的對(duì)角線(xiàn)是以頂點(diǎn)Ak+1為一個(gè)端點(diǎn)的所有對(duì)角線(xiàn),再加上原k邊形的一邊A1Ak,共增加的對(duì)角線(xiàn)條數(shù)(k+1-3)+1=k-1. f(k+1)=k(k-3)+k-1=(k2-k-2) =(k+1)(k-2)=(k+1)[(k+1)-3], 故當(dāng)n=k+1時(shí),命題也成立. 由(1)(2)可知,對(duì)于n≥4,n∈N*命題都成立. 活動(dòng)與探究3:(1)解:設(shè)a1=b1=a,公差為d,公比為q,由a2=b2,得a+d=aq.① ∵a1≠a2,an>0,∴a>0,d>0. 由①,得d=aq-a,q=1+>1. ∴b3-a3=aq2-(a+2d)=aq2-a-2a(q-1)=a(q-1)2>0. ∴b3>a3. ∵b4-a4=aq3-(a+3d)=a(q-1)(q2+q-2)=a(q-1)2(q+2)>0, ∴b4>a4.猜想出bn>an(n≥3,n∈N*). (2)證明:①當(dāng)n=3時(shí),由(1)可知已證得b3>a3, ∴n=3時(shí)猜想成立. ②假設(shè)當(dāng)n=k(n∈N*,k≥3)時(shí),bk>ak成立. 則當(dāng)n=k+1時(shí),∵bk+1=bkq,ak+1=ak+d, ∴bk+1-ak+1=bkq-ak-d=bk-ak-d =(bk-ak)+-d=(bk-ak)+. ∵q=1+>1,且b1=a>0, ∴{bn}為遞增數(shù)列.∴bk>a. ∴bk-a>0.又bk-ak>0, ∴(bk-ak)+>0. ∴bk+1-ak+1>0.∴bk+1>ak+1. ∴n=k+1時(shí),猜想也成立. 由①和②可知,對(duì)于n∈N*,n≥3猜想成立. 遷移與應(yīng)用: (1)解:當(dāng)n=1時(shí),a1=S1=2-a1,∴a1=1. 當(dāng)n=2時(shí),a1+a2=S2=22-a2,∴a2=. 當(dāng)n=3時(shí),a1+a2+a3=S3=23-a3,∴a3=. 當(dāng)n=4時(shí),a1+a2+a3+a4=S4=24-a4, ∴a4=.由此猜想an=(n∈N*). (2)證明:當(dāng)n=1時(shí),a1=1,結(jié)論成立. 假設(shè)n=k時(shí),結(jié)論成立,即ak=,那么n=k+1時(shí),ak+1=Sk+1-Sk=2(k+1)-ak+1-2k+ak=2+ak-ak+1,∴2ak+1=2+ak.∴ak+1===. 這表明n=k+1時(shí),結(jié)論成立,∴an=. 當(dāng)堂檢測(cè) 1.+ 2.1+a+a2 3. 4.f(k)+k 5.證明:(1)當(dāng)n=2時(shí),左邊=+++>,不等式成立. (2)假設(shè)當(dāng)n=k(k≥2,k∈N*)時(shí)命題成立,即 ++…+>, 則當(dāng)n=k+1時(shí),++…++++=++…++>+>+=,所以當(dāng)n=k+1時(shí)不等式也成立. 由(1)(2)可知,原不等式對(duì)一切n≥2,n∈N*均成立.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第二章 推理與證明 2.3 數(shù)學(xué)歸納法學(xué)案 蘇教版選修2-2 第二 推理 證明 數(shù)學(xué) 歸納 法學(xué) 蘇教版 選修
鏈接地址:http://m.appdesigncorp.com/p-5424241.html