附錄一 基于網(wǎng)絡(luò)的快速原型制造摘要:這篇論文提出了新的基于快速原型快速產(chǎn)品開發(fā)集成系統(tǒng),發(fā)展了通過充分利用迅速發(fā)展的計算機網(wǎng)絡(luò)和信息技術(shù)的網(wǎng)絡(luò)制造服務(wù)系統(tǒng),這個系統(tǒng)提供更好的在中小型企業(yè)中對于快速產(chǎn)品開發(fā)的支持。提出了制造業(yè)的網(wǎng)絡(luò)化服務(wù)體系的架構(gòu)。此外,一些關(guān)鍵問題,包括模型、規(guī)劃制造鏈,選擇可行的合作廠家,排列制造任務(wù),利用同步協(xié)作的工作環(huán)境,建立一個適合管理平臺等問題得到了論述??蛇\行 java 的解決辦法與網(wǎng)絡(luò)技術(shù),用于建立這樣一個網(wǎng)絡(luò)服務(wù)系統(tǒng)。最后提供了一個這種服務(wù)的應(yīng)用系統(tǒng)的實例。關(guān)鍵詞:快速原型制造、服務(wù)系統(tǒng)1.簡介這是信息技術(shù)時代. 信息技術(shù)影響社會各領(lǐng)域,并且大大影響了傳統(tǒng)工業(yè)。現(xiàn)代企業(yè)正面臨新的挑戰(zhàn):快速反應(yīng)的商機——一直被視為以保證公司的競爭力最重要的因素之一;制造業(yè)發(fā)展走向數(shù)字化、網(wǎng)絡(luò)和全球化.。為了有效的響應(yīng)變化,生產(chǎn)策略,根據(jù)市場情況和客戶需求在時時變化。任何改變策略,應(yīng)該使廠商更能自己有能力應(yīng)付這樣的需求,減少生產(chǎn)時間,提高質(zhì)量和速度,能夠為全球客戶提供優(yōu)質(zhì)的產(chǎn)品,改善交通運輸系統(tǒng)[1]。這是既定的事實,在設(shè)計和制造中利用計算機為獲得很大的工業(yè)生產(chǎn)力的提供了最重要的機會。未來制造業(yè)組織將是信息化,知識驅(qū)動和依據(jù)聯(lián)系到每個人的全球信息網(wǎng)絡(luò)自動化的自動控制,目前已被廣泛認同。為了滿足產(chǎn)品快速發(fā)展的需求,各種新技術(shù),如逆向工程(RE)、快速 Prototyping(RP),快速工具制造(RT)等出現(xiàn)了,并且被視為能夠縮短產(chǎn)品研制時間和制造是鍵的有利工具。例如,有人說 RP 可以節(jié)省新產(chǎn)品開發(fā)費用到 70%和市場時間的 90%。但是,這些設(shè)備對中小型企業(yè)(SMEs) 都太貴,并且許多技術(shù)比如 3D 固體模型、RP 規(guī)劃過程,自由形式表面重建等,都需要高技能人才來完成。因此,對中小企業(yè)在產(chǎn)品開發(fā)過程充分利用這些技術(shù)是特別困難的。為了大量中小企業(yè)的產(chǎn)品快速制造得到發(fā)展提供支持, 許多 RP 事務(wù)局(SBS),不僅可以制造物理原型、快速原型工具,還提供其它的工程服務(wù),已建立起來。到 2001 年, 世界各地有 500 多個 SBS。但并不是需要每個 SB 能處理所有的設(shè)計和制造能力,但必須有效運用外部資源,以更好地滿足客戶的需求。即通常定義為一個臨時聯(lián)合企業(yè)的以計算機網(wǎng)絡(luò)支持的虛擬企業(yè)將被建立。他們是為了滿足商機一起分享他們的技能、核心能力和資源,。每個 SB 處理自己的核心任務(wù),并且需要大量的合作伙伴來完成其它這個 SB 不能按時完成的工作。強調(diào)服務(wù)質(zhì)量的新思路,變成一個制造業(yè)在 21 世紀贏得全球競爭的基本方略。遠距離服務(wù)是一個針對廠商和顧客“服務(wù)”問題的新興領(lǐng)域。因為數(shù)字制造業(yè)技術(shù)進步很快,數(shù)字服務(wù)將沒有阻礙的進入綜合數(shù)字系統(tǒng)設(shè)計和制造。結(jié)合計算機和多媒體的因特網(wǎng),為商業(yè)和制造業(yè)的遠程融合和協(xié)作提供了巨大的潛力。對于 SBs 和 SMEs,完成網(wǎng)絡(luò)制造平臺,來加速生產(chǎn)效率是非常緊迫的。這篇論文的其他部分組織如下:1.在第二部分回憶了相關(guān)的研究工作 2.在第 3 部分,我們介紹一個基于 RP 的完整的得到快速發(fā)展的系統(tǒng)。第四部分敘述網(wǎng)絡(luò)制造服務(wù)體系的了流程及功能設(shè)計。第 5 部分介紹系統(tǒng)運行平臺配置。第 6 部分我們討論了互聯(lián)網(wǎng)應(yīng)用設(shè)計。第 7 部分研究了案例。最后,第 8 部分是論文的總結(jié)。2 、相關(guān)的研究伴隨著計算機網(wǎng)絡(luò)和信息技術(shù)的發(fā)展,網(wǎng)絡(luò)制造技術(shù)在制造業(yè)中發(fā)揮著越來越重要的作用。近年在世界各地來自學術(shù)界和工業(yè)團體為支持網(wǎng)絡(luò)制造的研究與實踐(或全球制造或者遠程制造)作了大量投資。一些戰(zhàn)略和框架已經(jīng)提出。 Abdel-Malek 等[8]描述了一個架構(gòu),讓公司可以把一些生產(chǎn)和設(shè)計活動,通過互聯(lián)網(wǎng)發(fā)展模式,以協(xié)助公司選擇可替代的技術(shù)和功能,最大限度地發(fā)揮靈活性。Montreuil 等[9]提出了一個戰(zhàn)略框架,提出了設(shè)計和制造靈活的經(jīng)營網(wǎng)絡(luò),以動態(tài)掌握使合作計劃、控制和管理日常的環(huán)境。Tso 等介紹了代理式的協(xié)作支持服務(wù)系統(tǒng), 通過專門設(shè)計一些虛擬代理信息網(wǎng)絡(luò),能夠滿足制造服務(wù)的要求。Chen 等[11]提出了基于網(wǎng)絡(luò)設(shè)計與制造的綜合框架,是基于 java 和 CORBA 技術(shù)的。Offodile 和 Abdel-Malek 利用虛擬制造模式將制造業(yè)和信心產(chǎn)業(yè)融合的戰(zhàn)略框架。Huang 等提出了對于虛擬企業(yè)架構(gòu)和控制機制的框架。O’Sullivan[14]描述了信息結(jié)構(gòu)及相關(guān)資料,來了解和處理商業(yè)發(fā)展。Akkermansa和 HORSTC[15]討論了信息技術(shù)基本標準化公司的管理方并指出了戰(zhàn)略框架以指導管理者基于一些原有的經(jīng)濟與管理理論作出明智的決定,如交易費用理論、組織設(shè)計和成熟發(fā)展階段。Jin 等[16]提出研究和關(guān)鍵技術(shù)的應(yīng)用解決方案,其中包括確保網(wǎng)絡(luò)數(shù)據(jù)在成員之間傳輸?shù)陌踩呗?;基?Web/Dotd 的數(shù)據(jù)管理(分布對象技術(shù))、XML 標準,能夠保證不同結(jié)構(gòu)環(huán)境的數(shù)據(jù)交換;提供各類服務(wù)轉(zhuǎn)換文件的網(wǎng)絡(luò)平臺。 Woerner 和 Woern 網(wǎng)絡(luò)服務(wù)提出了新的發(fā)展平臺,提供了虛擬工程合作生產(chǎn)的方法。為了充分認識當今全球化的制造業(yè)的遠程工程及當前市場形勢和客戶需求,一些全球生產(chǎn)網(wǎng)絡(luò)已經(jīng)建立,其中包括在社會生產(chǎn)工程師、LockheedMartin(AIMSNET)[19]、3M(3M 創(chuàng)新全球網(wǎng)絡(luò))。今天的產(chǎn)業(yè)正面臨嚴重的其快速發(fā)展所帶來的全球海外活動集成制造環(huán)境的結(jié)構(gòu)性問題,。服務(wù)和維修對于公司保持制造業(yè)生產(chǎn)力及國外地區(qū)客戶滿意變得極為重要。由于傳統(tǒng)服務(wù)臺的固有問題,一些公司已開始發(fā)展網(wǎng)上在線客戶服務(wù)支撐體系。Foo 等綜合描述客戶服務(wù)臺對于互聯(lián)網(wǎng)服務(wù)的支持。Lee 討論了遠程服務(wù)系統(tǒng)設(shè)計制造設(shè)備和產(chǎn)品支持的概念框架和生命周期。已建立的示范遠程客戶支持系統(tǒng) FCSA 證明了 Glober 的項目。以上這些體系的目的是為有效滿足客戶在使用遠程支持、維修設(shè)備。 加州大學研究和發(fā)展項目,稱為遠程制造廠(TMF)是建立在因特網(wǎng)上的自動快速生產(chǎn)。 用戶可以使用 TMF 提供就業(yè)機會,并維持系統(tǒng)自動排隊。同時可以自動檢查 StL 的許多缺陷。在設(shè)計和制造過程中使用 RP 技術(shù)可能帶來巨大的好處。但是,需要有效地利用這些好處,這些好處才能得到完全的開發(fā)。對全球 RP技術(shù)有一個了解是非常困難的。因為很快出現(xiàn)了一些新的改進方面的工作。為了幫助選擇合適的快速制造過程, 已經(jīng)開發(fā)了許多快速原型系統(tǒng)選擇工作。Quickparts.com,這是一個私人擁有制造服務(wù)公司致力于提供客戶網(wǎng)上電子商務(wù)系統(tǒng)用于采購量低、高生產(chǎn)量關(guān)稅地區(qū),并形成了一種系統(tǒng)QuickQuote。QuickQuote 讓顧客得到為生產(chǎn)部件的快速的報價。3D 系統(tǒng)公司是最早、最大的 RP 制造商,提供了通過互聯(lián)網(wǎng)的服務(wù)。從這些調(diào)查的文字,顯然大部份的研究主要集中在戰(zhàn)略和總體結(jié)構(gòu)網(wǎng)絡(luò)制造以及個別功能模塊,還沒有一次全面 comprebanausic 網(wǎng)絡(luò)制造和服務(wù)體系,支持快速的產(chǎn)品開發(fā)。 基于我們以前的工作,及新的研究 ,以網(wǎng)絡(luò)為基礎(chǔ)的生產(chǎn)服務(wù)體系的產(chǎn)品迅速開發(fā)將被建立。3 、快速制造的綜合系統(tǒng)結(jié)構(gòu)從最初的概念設(shè)計到產(chǎn)品的商業(yè)性的發(fā)展過程包括:產(chǎn)品設(shè)計; 性能分析,安全性和可靠性; 對產(chǎn)品原型試驗評價; 設(shè)計和修改。因此,新產(chǎn)品開發(fā)的每一步進程對產(chǎn)品市場化時間產(chǎn)生直接影響。一個好的產(chǎn)品開發(fā)體系,使設(shè)計師或設(shè)計小組必須考慮各方面的產(chǎn)品設(shè)計、制造、銷售、回收初期的設(shè)計周期。因此,設(shè)計制作可輕易改變并有效。反饋越流暢,該系統(tǒng)成功的可能性越高。設(shè)計制造(DFM)和并行工程(CE)要求產(chǎn)品設(shè)計和開發(fā)過程,同時得到發(fā)展,而不是按順序。產(chǎn)品快速發(fā)展的綜合系統(tǒng)由三個單元組成:數(shù)字原型、物理原型和快速制造裝備與系統(tǒng)功能系統(tǒng)。產(chǎn)品開發(fā)利用 3 維 CAD 軟件制造 3D 立體模型開始。在這一階段,產(chǎn)品幾何形狀得到定義,它在美學上,尺寸上是多種多樣的。數(shù)字原型的主要功能是完成 3D 模型。在設(shè)計創(chuàng)作過程,產(chǎn)品及其部件在 3D CAD 系統(tǒng)上直接設(shè)計(如 Pro/E、Unigraphics、CATIA、IDEA 等)。 如果實體零件可用, 模型可用逆向工程技術(shù)建造的 (RE)。RE 一種利用現(xiàn)有零件建立物理模型的方法,建立數(shù)字模型,然后用它來制造部件。如果為提高產(chǎn)品的性能而再設(shè)計,RE 能減少開發(fā)周期。當設(shè)計師采用模擬創(chuàng)造了一個新的設(shè)計,還要進一步利用數(shù)據(jù)分析和設(shè)計制造制造模擬模型。逆向工程的三個主要步驟是數(shù)字化特征提取、特征擴展、3 維 CAD 模型。完成零件數(shù)字化的儀器可以是接觸和非接觸式。有各種商業(yè)化的數(shù)字化儀。從測量系統(tǒng),協(xié)調(diào)機(CMM)、激光掃描機,到超聲波儀。它們可分為兩大類:接觸和非接觸式。激光掃描三角(LTS)、磁共振影像(MRI)、計算機斷層(CT)是常用的非接觸式的裝置。接觸式的主要有 CMM 和截面圖象測量(CIM)。特征提取通常是通過數(shù)據(jù)捕捉和捕捉表面特征。零件模型是通過填充適當?shù)臄?shù)據(jù)面完成的。為了減少重復設(shè)計原型試驗周期、提高生產(chǎn)過程,并增加機器的可靠性,必須通過 CAE 指導生產(chǎn),優(yōu)化設(shè)計和制造過程。CAD 模型可以利用 RP 直接轉(zhuǎn)化為實際的原型。RP 是一個新的成型零件制造過程,是通計算機控制一層層的堆積,是直接從 3D 模型在很短的時間內(nèi)完成的。與傳統(tǒng)加工方法相反,多數(shù)的快速原型制造系統(tǒng)基于堆積過程,而非材料切除。 因此,這種方法不受規(guī)機械加工限制因素的限制常。在設(shè)計和制造過程中使用RP 可能帶來巨大的好處??梢钥s短產(chǎn)品市場化時間、降低成本和提高質(zhì)量。過去 10 年來,已廣泛應(yīng)用于工業(yè)領(lǐng)域。主要的商業(yè)化 RP 技術(shù)包括業(yè)stereolithgraphy(ST)selectivelasersintering(SLS),融合沉積制造(FDM)、膠合物體制造(LOM)、彈道微粒制造(BMP)、三維印刷(3D 印刷)等。RT 是一種技術(shù),把 RP 零件轉(zhuǎn)化為功能部件,特別是金屬零件。此外, RP、RT 的融合推動了公司并行工程的發(fā)展。許多由 RP 系統(tǒng)制造模具的生產(chǎn)過程得到發(fā)展。RT 的方法大致可分為直接和間接的,軟、硬切削的。間接 RT 需要掌握某種模式,這種模式可以由常規(guī)方法(HSM 等)獲得,或者由 RP,SL,SLS 獲得。直接 RT,顧名思義,是直接由 RP 系統(tǒng)制造的,從而消除了中間產(chǎn)生步驟格局。根據(jù)上述技術(shù)、新產(chǎn)品開發(fā)的綜合系統(tǒng)將迅速建立起來。詳細結(jié)構(gòu)如圖 1。4、 工作流程和功能設(shè)計工作流程的生產(chǎn)服務(wù)體系網(wǎng)絡(luò)如圖 2。 第一步是登陸 SB 網(wǎng)站。用戶用自己的名稱和密碼進入。那些沒有登記或核準可以進入系統(tǒng)的,只限于觀看資料,例如這一系統(tǒng)公開的'典型案例'。進入用戶的密碼將有系統(tǒng)驗證。進入網(wǎng)站成功之后,系統(tǒng)會自動核對使用者的安全程度,確定哪些模塊可以進入或使用。根據(jù)認證的制度,所有用戶可分為四類:一般用戶(未注冊)、潛在客戶,真正的客戶,系統(tǒng)管理員。接受客戶要求后,SB 將首先進行規(guī)劃過程的任務(wù)分解落實,并選擇最合適的加工方法。在上未做后續(xù)工作之前,用戶必須得到產(chǎn)品的排隊和初步生產(chǎn)時間。 如果可以接受這樣的結(jié)果,在最初階段 ,SB 進一步與用戶進行了電視會議。當對方確認合同,用戶成為真正的客戶。用戶提出的生產(chǎn)任務(wù)將由 SB 做到最好的實施。但是,如果 SB 沒有這樣的制造能力,或不能按時完成, 充分利用外部資源來源進行未完成的任務(wù),是一個有效的方法。下一步就是選擇合適的合作廠商,形成虛擬企業(yè)依靠分配制度完成任務(wù)的工作。此外,為了監(jiān)測安排,以確保生產(chǎn)的順利生產(chǎn),用戶與合作生產(chǎn)企業(yè),必須盡快實現(xiàn)基本信息、生產(chǎn)進度時間表的生產(chǎn)監(jiān)管。所以落后或不符合質(zhì)量標準任何公司,將受到嚴格審查,及時采取預防和補救措施,提前預測損害。提到上述流程網(wǎng)絡(luò)化服務(wù)體系和數(shù)字遠程服務(wù)體系功能要求,服務(wù)體系包括九個功能模塊:技術(shù)研究、典型案例、信息咨詢、協(xié)議(應(yīng)用服務(wù)提供者)一套工具,客戶管理、電子商務(wù)、制造服務(wù)、導航系統(tǒng)。 詳細結(jié)構(gòu)見圖 3。這九個部分無阻礙的共同努力實現(xiàn)共同目標,即以提供及時有效的服務(wù)和產(chǎn)品平臺,以支持中小企業(yè)發(fā)展迅速。其中一個目的是研究技術(shù),使用戶能更加了解相關(guān)的知識產(chǎn)品的快速發(fā)展。為了幫助讀者更好地了解和運用這些新技術(shù),系統(tǒng)說明一些真實案例。技術(shù)研究和典型案例的主要提供自助服務(wù)的用戶。根據(jù)專家支配,SB 能回答客戶的問題并且有與用戶溝通解決問題的信息咨詢模塊。ASP 了五項有用成分組成如下: RE/RP/RT 的進程規(guī)劃,STL 檢查和維護,零件優(yōu)化控制, 生產(chǎn)結(jié)構(gòu)支撐、零件優(yōu)化計算。逆向工程方法有多種,除了以前描述的 RP 和 RT,每種都有其特點和適用范圍。按個別情況和任務(wù)的要求,選擇最合適的加工方法時非常困難的。根據(jù) ASP 模式有 3 種選擇器,即“RE selector” 、“RP selector”、 “RT selector”。 StL 固體模型之建立,減少約 10%的時間。這表明自動檢查錯誤所有其它重要的業(yè)務(wù)對于 RP 控制室非常重要的。根據(jù)我們提供網(wǎng)絡(luò)資源的經(jīng)驗,我們知道, 在沒有設(shè)計者的網(wǎng)站進行錯誤自動檢查時是特別重要的。在某些情況下我們已經(jīng)制定了各種算法發(fā)現(xiàn)自動拓撲與幾何修補缺陷。有兩個'防火墻'發(fā)現(xiàn)這些缺陷:一是結(jié)合用戶操作。另外就是服務(wù)器后臺的管理。由于功能定位比較狹窄, StL 如果有有致命缺陷或者移交期間失去部分檔案資料,就必須再從客戶選擇材料。組成部分在制造過程中的質(zhì)量策劃可以用的方法有很大的不同。 5 結(jié)論和未來研究為了滿足目前對快速產(chǎn)品開發(fā)集成系統(tǒng)的需求, 提出了一種新的基于快速原型快速制造融合系統(tǒng), ,提出了更好的適合中小型企業(yè)的產(chǎn)品快速發(fā)展的網(wǎng)絡(luò)服務(wù)系統(tǒng)。一種方法是用 JAVA 制造網(wǎng)絡(luò)化服務(wù)體系建設(shè)的基礎(chǔ)上建造三層瀏覽器/服務(wù)器模式。自 java 引入這項技術(shù),可以很容易擴展到基礎(chǔ)設(shè)施標準。服務(wù)體系包括技術(shù)信息平臺、電子商務(wù)平臺、制造服務(wù)平臺,提供了生產(chǎn)協(xié)作環(huán)境和用戶服務(wù)局,使得部分制造資源有效地幫助中小型企業(yè)產(chǎn)品快速發(fā)展。附錄二 A web- based manufacturing service systemfor rapid product developmentHongbo Lana, Yucheng Dinga,*, Jun Honga, Hailiang Huangb, Bingheng LuaAbstractThis paper proposes a novel integrated system of rapid product development based on rapid prototyping, and develops anetworked manufacturing service system which offers better support for the rapid product development in small and mediumsized enterprises by taking full advantage of the quickly evolving computer network and information technologies. The architecture of the networked manufacturing service system is presented. Furthermore, some of the key issues, includingmodelling and planning a manufacturing chain, selecting feasible collaborative manufacturers, queuing a manufacturing task, using the synchronously collaborative work environment, and constructing a suitable running platform, are described in detail. Java-enabled solution, together with web techniques, is employed for building such a networked service system. Finally, an actual example is provided illustrating the application of this service system.Keywords:Rapid product development; Rapid prototyping; Service system; Web-based application1. IntroductionThis is the era of information technology. Informationtechnology has influenced every realm of society, and dramatically impacted on the traditional industry.Current industries are facing the new challenges:quick response to business opportunity has been consideredas one of the most important factors to ensurecompany competitiveness; manufacturing industry isevolving toward digitalization, network and globalization.In order to respond to the change effectively,manufacturing strategy has to be modified from timeto time in accordance with the market situation andcustomer demand. Any change of strategy should enable manufacturers to be better equipped themselves,with capabilities to cope with demands suchas a faster response to market changes, a shortenedlead time of production, improved quality and speed,the ability to deliver quality products to global customers,and improved communications and transportationsystem [1]. It is an established fact that the useof computers in design and manufacturing constitutesthe most significant opportunity for substantial productivitygain in industry. It has now been widelyaccepted that the future of manufacturing organizationswill be information-oriented, knowledge drivenand much of their daily operations will be automatedaround the global information network that connectseveryone together [2]. In order to meet the demand ofrapid product development, various new technologiessuch as reverse engineering (RE), rapid prototyping (RP), and rapid tooling (RT) have emerged and areregarded as enabling tools with abilities to shorten theproduct development and manufacturing time. Forexample, it has been claimed that RP can cut newproduct development costs by up to 70% and the timeto market by 90% [3]. However, these equipments aretoo expensive for the small and medium sized enterprises(SMEs), and many techniques such as 3D CADsolid modelling, RP process planning, free-form surfacesreconstruction, etc., require the high skilled personnelto complete. Therefore, it is especially difficultfor the SMEs to take full advantage of these technologiesin the product development process. In order tooffer the support of rapid product development fornumerousSMEs,manyRPservice bureaus (SBs)whichcan not only manufacture physical prototype and rapidtooling but also provide other engineering services,have been established. By 2001, there are more than500 SBs all over the world. But not every SB canpossess all design and manufacturing capabilitiesrequired, it must employ effectively the externalresource to better satisfy client requirements. Namely,a virtual enterprise which usually defined as a temporaryalliance of enterprises that come together to sharetheir skills, core competencies, and resource in order tobetter respond to business opportunities, whose cooperationis supported by computer networks [4–6], is tobe founded. Every SBconducts only the tasks of its corecompetencies, and depends on numerous partners tocarry out the remaining tasks that this SB has no such manufacturing capabilities to accomplish in time.While a new thought emphasizing service quality is becoming a basic strategy by which manufacturing industries can win global competition in the 21st century. Teleservice engineering is an emerging fieldwhichaddresses ‘‘service’’ issue for manufacturers and customers. As digital manufacturing technique progresses quickly, digital service will be integrated seamlessly into the digital design and manufacturing system [7]. The internet, incorporating computers and multimedia, has provided tremendous potential for remote integration and collaboration in business and manufacturing applications. In order to provide a production collaborative environment for many SMEs and SBs to implement the networked manufacturing, it is especially urgent for many SBs and SMEs to construct a service platform of networked manufacturing to speed up the product development process of the SMEs.The rest of this paper is organized as follows.Related research work is reviewed in Section 2. In Section 3, we introduce an integrated system of rapid product development based on RP. Section 4 describes the workflow and functional design of the networked manufacturing service system. The configuration of system running platform is presented in Section 5. In Section 6, we discuss the design of internet application. A case study is demonstrated in Section 7. Finally, Section 8 concludes the paper.2. Related researchWith the development of computer network and information technologies, the networked manufacturing techniques are playing a more and more important role in manufacturing industry. Substantial investments have been made to support the research and practice of networked manufacturing (telemanufacturing or global manufacturing) from both the academic community and industrial bodies all over the world in recent years. A number of strategies and frameworks have been proposed. Abdel-Malek et al. [8] described a structure within which a company can outsource several of its production and design activities via internet and developed a model to aid a company in selecting among the available technological and functional alternatives to maximize its flexibility. Montreuil et al. [9] presented a strategic framework for designing and operating agile manufacturing networks, enabling to collaboratively plan, control and manage day-to-day contingencies in a dynamic environment. Tso et al. [10] introduced the architecture of an agent-based collaborative service support system, which is able to carry out service requests in a manufacturing information network through some specially designed virtual agents. Cheng et al. [11] put forward an integrated framework for web-based design and manufacturing which is developed based on Java solution and CORBA-ORG broking technologies. Offodile and Abdel-Malek [12] introduced a framework for integrating IT and manufacturing strategies using the virtual manufacturing paradigm. Huang et al. [13] presented a holonic framework for virtual enterprises and control mechanisms of virtual enterprises under this framework. O’Sullivan [14] described an information architecture and associated toolset for understanding and managing the process of business development. Akkermansa and Horstc [15] discussed managerial aspects of information technology infrastructure standardisation in networked manufacturing firms and presented a strategic framework to guide managers in making sensible decisions regarding IT infrastructure standardisation, based on a number of pre-existing economic and management theories, such as transaction cost theory, organisational design and IT maturity growth stages. Jin et al. [16] presented a research on key application technologies and solutions, which includes a network safety strategy which ensures data transfer among the leaguer members; production data management based on Web/DOT (distributed object technology) and XML criteria which ensure data exchange in structure-variance characteristic environments; the network platform which provides the conversion service of different types of CAD files. Woerner and Woern [17] introduced a new web service based platform providing developed methods for co-operative plant production within virtual engineering.To full realize the teleservice engineering in today’s globalized manufacturing industry and meet the current market situation and customer demand, a number of global manufacturing networks have been established by, among others, the Society of Manufacturing Engineer [18], Lockheed Martin (AIMSNET) [19] and 3M (the 3M Innovation Global Network) [20].Today’s industries are facing serious structural problems brought about by their rapid development of overseas activities under a global integrated manufacturing environment. Service and maintenance are becoming extremely important practices for companies to maintain their manufacturing productivity and customer satisfaction in foreign regions. Due to the inherent problems of traditional help desk support, some companies have started developing web-based online customer service support system. Foo et al. [21] described an integrated help desk support for customer service via internet. Lee [7] discussed the concept and framework of a teleservice engineering system for the life cycle support of manufacturing equipment and products. A system for remote customer support has been created in the FCSA demonstrator of the Globerman 21 project [22]. The purpose of these systems above is to provide effective and responsive remote support to customers in the use, maintenance and troubleshooting of their equipment.University of California is studying and developing a project called the Tele-Manufacturing Facility (TMF) which is to create an automated RP capability on the Internet. TMF allows users to easily submit jobs and have the system automatically maintain a queue. While it can automatically check many flaws in .STL files, and in many cases, fix them [23]. RP potentially offers great benefits when used during the design and manufacturing process. However, RP must be used in an effective manner if these benefits are to be fully exploited. The RP-novices have a lot of difficulties in getting a global view of the RP technique and in tackling well founded decision for investment or outsourcing of RP tasks because of the very quick appearance of new and improved processes in this field. In order to help novices select a suitable RP process, the rapid prototyping system selector has been developed by many researchers [24–27]. Quickparts. com, which is a privately held manufacturing services company dedicated to providing customers with an on-line E-commerce system to procure lowvolume and high-volume custom manufactured parts, has developed a QuickQuote system. The QuickQuote system enables customers to get instant, customerized quotations for the production of their parts [28]. 3D Systems Company, which is the earliest and biggest RP equipment manufacturer, has provided RP analysis of performance, safety and reliability; product prototyping for experimental evaluation; and design modification. Therefore, any step of new product development process has a direct and strong influence on time-to-market. A good product development system must enable designers or design teams to consider all aspects of product design, manufacturing, selling and recycling at the early stage of a design cycle. So that design iteration and changes can be made easily and effectively. The more fluent the feedback is, the higher possibility success of the system has. Design for manufacturing (DFM) and concurrent engineering (CE) require that product and process design be developed simultaneously rather than sequentially [32].The integrated system of rapid product development is composed of three modules: digital prototype, physical prototype and rapid tooling and functional part manufacturing system. The product development starts from the creation of a 3D model using a 3D CAD software package. At that stage the product geometry is defined and its aesthetic and dimensional characteristics are verified. The main function of digital prototype is to perform 3D CAD modelling. The product and its components are directly designed on a 3D CAD system (e.g. Pro/Engineer, Unigraphics, CATIA, IDEAS, etc.) during the creative design process. If a physical part is available, the model can be constructed by the reverse engineering (RE) technique. RE is a methodology for constructing CAD models of physical parts by digitizing an existing part, creating a digital model and then using it to manufacturing components [33]. RE can reduce the development cycle when redesigns become necessary for improved product performance. Pre-existing parts with features for improved performance can be readily incorporated into the desired part design. When a designer creates a new design using mock-up, it is also necessary to construct the CAD model of the mock-up for further use of the design data in analysis and manufacturing. The three primary steps in RE process are part digitization, features extraction, and 3D CAD modelling. Part digitization is accomplished by a variety of contact or non-contact digitizers. There are various commercial systems available for part digitization. There systems range from coordinate measuring machine (CMM), laser scanners to ultrasonic digitizers. They can be classified into two broad categories: contact and non-contact. Laser triangulation scanner (LTS), magnetic resonance images (MRI), and computer tomography (CT) are commonly used non-contact devices. Contact digitizers mainly have CMM and cross-sectional imaging measurement (CIM). Feature extraction is normally achieved by segmenting the digitized data and capturing surface features such as edges. Part modelling is fulfilled through fitting a variety of surface to the segmented data points [34]. In order to reduce the iterations of design-prototypetest c