合頁沖壓件的沖孔落料、彎曲復(fù)合模具設(shè)計(jì)與制造含21張CAD圖.zip
合頁沖壓件的沖孔落料、彎曲復(fù)合模具設(shè)計(jì)與制造含21張CAD圖.zip,合頁,沖壓,沖孔,彎曲,復(fù)合,模具設(shè)計(jì),制造,21,CAD
沖壓 利用模具在壓力機(jī)上將金屬板材制成各種板片狀零件和殼體、容器類工件,或?qū)⒐芗瞥筛鞣N管狀工件。這類在冷態(tài)進(jìn)行的成型工藝方法稱為冷沖壓,簡(jiǎn)稱沖壓。
沖壓加工是借助于常規(guī)或?qū)S脹_壓設(shè)備的動(dòng)力,使板料在模具里直接受到變形力并進(jìn)行變形,從而獲得一定形狀,尺寸和性能的產(chǎn)品零件的生產(chǎn)技術(shù)。板料,模具和設(shè)備是沖壓加工的三要素。
按沖壓加工溫度分為熱沖壓和冷沖壓。前者適合變形抗力高,塑性較差的板料加工;后者則在室溫下進(jìn)行,是薄板常用的沖壓方法。它是金屬塑性加工(或壓力加工)的主要方法之一,也隸屬于材料成型工程技術(shù)。
沖壓所使用的模具稱為沖壓模具,簡(jiǎn)稱沖模。沖模是將材料(金屬或非金屬)批量加工成所需沖件的專用工具。沖模在沖壓中至關(guān)重要,沒有符合要求的沖模,批量沖壓生產(chǎn)就難以進(jìn)行;沒有先進(jìn)的沖模,先進(jìn)的沖壓工藝就無法實(shí)現(xiàn)。沖壓工藝與模具、沖壓設(shè)備和沖壓材料構(gòu)成沖壓加工的三要素,只有它們相互結(jié)合才能得出沖壓件。
沖壓件與鑄件、鍛件相比,具有薄、勻、輕、強(qiáng)的特點(diǎn)。沖壓可制出其他方法難于制造的帶有加強(qiáng)筋、肋、起伏或翻邊的工件,以提高其剛性。由于采用精密模具,工件精度可達(dá)微米級(jí),且重復(fù)精度高、規(guī)格一致,可以沖壓出孔窩、凸臺(tái)等。冷沖壓件一般不再經(jīng)切削加工,或僅需要少量的切削加工。熱沖壓件精度和表面狀態(tài)低于冷沖壓件,但仍優(yōu)于鑄件、鍛件,切削加工量少。
沖壓是高效的生產(chǎn)方法,采用復(fù)合模,尤其是多工位級(jí)進(jìn)模,可在一臺(tái)壓力機(jī)(單工位或多工位的)上完成多道沖壓工序,實(shí)現(xiàn)由帶料開卷、矯平、沖裁到成形、精整的全自動(dòng)生產(chǎn)。生產(chǎn)效率高,勞動(dòng)條件好,生產(chǎn)成本低,一般每分鐘可生產(chǎn)數(shù)百件。 與機(jī)械加工及塑性加工的其它方法相比,沖壓加工無論在技術(shù)方面還是經(jīng)濟(jì)方面都具有許多獨(dú)特的優(yōu)點(diǎn)。
(1) 沖壓加工的生產(chǎn)效率高,且操作方便,易于實(shí)現(xiàn)機(jī)械化與自動(dòng)化。這是因?yàn)闆_壓是依靠沖模和沖壓設(shè)備來完成加工,普通壓力機(jī)的行程次數(shù)為每分鐘可達(dá)幾十次,高速壓力要每分鐘可達(dá)數(shù)百次甚至千次以上,而且每次沖壓行程就可能得到一個(gè)沖件。
(2) 沖壓時(shí)由于模具保證了沖壓件的尺寸與形狀精度,且一般不破壞沖壓件的表面質(zhì)量,而模具的壽命一般較長(zhǎng),所以沖壓的質(zhì)量穩(wěn)定,互換性好,具有“一模一樣”的特征。
(3) 沖壓可加工出尺寸范圍較大、形狀較復(fù)雜的零件,如小到鐘表的秒表,大到汽車縱梁、覆蓋件等,加上沖壓時(shí)材料的冷變形硬化效應(yīng),沖壓的強(qiáng)度和剛度均較高。
(4) 沖壓一般沒有切屑碎料生成,材料的消耗較少,且不需其它加熱設(shè)備,因而是一種省料,節(jié)能的加工方法,沖壓件的成本較低。
由于沖壓具有如此優(yōu)越性,沖壓加工在國民經(jīng)濟(jì)各個(gè)領(lǐng)域應(yīng)用范圍相當(dāng)廣泛。例如,在宇航,航空,軍工,機(jī)械,農(nóng)機(jī),電子,信息,鐵道,郵電,交通,化工,醫(yī)療器具,日用電器及輕工等部門里都有沖壓加工。不但整個(gè)產(chǎn)業(yè)界都用到它,而且每個(gè)人都直接與沖壓產(chǎn)品發(fā)生聯(lián)系。像飛機(jī),火車,汽車,拖拉機(jī)上就有許多大,中,小型沖壓件。小轎車的車身,車架及車圈等零部件都是沖壓加工出來的。據(jù)有關(guān)調(diào)查統(tǒng)計(jì),自行車,縫紉機(jī),手表里有80%是沖壓件;電視機(jī),收錄機(jī),攝像機(jī)里有90%是沖壓件;還有食品金屬罐殼,鋼精鍋爐,搪瓷盆碗及不銹鋼餐具,全都是使用模具的沖壓加工產(chǎn)品;就連電腦的硬件中也缺少不了沖壓件。
沖壓主要是按工藝分類,可分為分離工序和成形工序兩大類。分離工序也稱沖裁,其目的是使沖壓件沿一定輪廓線從板料上分離,同時(shí)保證分離斷面的質(zhì)量要求(表1)。成形工序的目的是使板料在不破坯的條件下發(fā)生塑性變形,制成所需形狀和尺寸的工件。在實(shí)際生產(chǎn)中,常常是多種工序綜合應(yīng)用于一個(gè)工件。沖裁、彎曲、剪切、拉深、脹形、旋壓、矯正是幾種主要的沖壓工藝。
沖壓是使用模具分離材料的一種基本沖壓工序,它可以直接制成平板零件或?yàn)槠渌麤_壓工序如彎曲、拉深、成形等準(zhǔn)備毛坯,也可以在已成形的沖壓件上進(jìn)行切口、修邊等。沖裁廣泛用于汽車、家用電器、電子、儀器儀表、機(jī)械、鐵道、通信、化工、輕工、紡織以及航空航天等工業(yè)部門。沖裁加工約占整個(gè)沖壓加工工序的50%~60%。
Stamping sheet metal foming;stamping uses a die to make sheet metal parts and shells, container parts, or tube parts on the press. This kind of forming process in cold state is called cold stamping, abbreviated as stamping.
By means of the power of the conventional or special stamping equipment, the stamping process can make the sheet metal be deformed directly in the die, so as to obtain a certain shape, size and performance of the product parts production technology. Sheet metal, die and equipment are the three elements of stamping processing.
According to the stamping temperature divided into hot stamping and cold stamping. The former is suitable for sheet metal processing with high deformation resistance and poor plasticity, and the latter is a common stamping method for sheet metal at room temperature. It is one of the main methods of metal plastic working (or pressure processing), and also belongs to the material forming engineering technology.
The die used for stamping is called stamping die, abbreviated as punching die. Die is a special tool for mass processing of material (metal or non-metal) into required blanking parts. The punching die is very important in stamping, without which the batch stamping production is difficult, and without the advanced stamping die, the advanced stamping process can not be realized. Stamping process and die, stamping equipment and stamping material constitute the three elements of stamping processing, only when they combine each other can the stamping parts be obtained.
Compared with castings and forgings, stamping parts have the characteristics of thin, uniform, light and strong. Stamping can produce stiffeners that are difficult to manufacture by other methods,
Ribbed, undulating or flanged workpieces to improve their rigidity. Because of the precision mould, the precision of the workpiece can reach the micron level, and the repeatability is high, and the specifications are consistent, so the workpiece can be punched out of the hole socket, convex table and so on. Cold stamping parts are generally no longer machined, or only a small amount of cutting is required. The precision and surface state of hot stamping parts are lower than that of cold stamping parts, but they are still better than castings, forgings and less cutting capacity.
Stamping is an efficient production method. By using compound die, especially multi-position progressive die, multiple stamping processes can be completed on a press (single station or multi-station), which can be realized by unwinding with material, levelling, blanking to forming. Complete automatic production. High production efficiency, good labor conditions, low production costs, generally can produce hundreds per minute. Compared with other methods of mechanical and plastic machining, stamping processing has many unique advantages in both technical and economic aspects.
[機(jī)] punching press
Point. The main performance is as follows.
The main results are as follows: (1) the production efficiency of stamping processing is high, and the operation is convenient, it is easy to realize mechanization and automation. This is because stamping depends on the stamping die and stamping equipment to complete the processing, the ordinary press can travel dozens of times per minute, high-speed pressure can be as many as hundreds of times per minute, or more than 1,000 times a minute. And each stamping trip can get a punch.
(2) because the die ensures the precision of the size and shape of the stamping parts, and generally does not destroy the surface quality of the stamping parts, but the die life is generally longer, so the quality of stamping is stable and the interchangeability is good. Characteristic of "exactly the same".
(3) stamping can process parts with large size range and complex shape, such as stopwatch from small to clock, from automobile longitudinal beam to cover, etc., and the cold deformation hardening effect of the material during stamping, the strength and stiffness of stamping are higher.
(4) the stamping process is a kind of material-saving and energy-saving processing method, and the cost of stamping parts is lower because of the fact that no chips are produced, the consumption of material is less, and no other heating equipment is needed.
Because of the advantages of stamping, stamping processing is widely used in various fields of national economy. For example, in aerospace, aviation, military industry, machinery, agricultural machinery, electronics, information, railway, post and telecommunications, transportation, chemicals, medical devices, household appliances and light industry and other sectors have stamping processing. Not only is it used by the entire industry, but everyone has direct contact with the stamping product. Like aircraft, trains, cars, tractors there are many large, medium, small stamping parts. Car body, frame and car ring and other parts are stamped out. According to the survey, bicycles, sewing machines, watches have 8 0% are stamping parts; 90% are stamping parts in TV sets, recorders and cameras; and food metal casings, steel precision boilers, enamel pots and stainless steel cutlery are all stamped and processed products using moulds; Even the hardware of the computer can not be short of stamping parts.
Stamping is mainly classified according to the process, can be divided into two categories: separation process and forming process. The separation process is also known as blanking, the purpose of which is to separate the stamping parts from the sheet metal along a certain contour line, while ensuring the quality requirements of the separated sections (Table 1). The purpose of the forming process is to make the sheet plastic deformation without breaking the billet and make the required shape and size workpiece. In practical production, a variety of processes are often integrated into one workpiece. Blanking, bending, shearing, drawing, bulging, spinning and correcting are the main stamping processes.
It can be made directly into flat plate parts or to prepare blanks for other stamping processes such as bending, drawing, forming, etc. It can also be used to cut and trim the formed stamping parts. Blanking is widely used in automotive, household appliances, electronics, instrumentation, machinery, railway, communications, chemical, light industry, textile, aerospace and other industrial sectors. Blanking process accounts for about 50% of the entire stamping process 60%.
.
收藏