Applied Energy 86 (2009) 2038 –2046內(nèi)容列表可以在ScienceDirect找到應(yīng)用能源雜志主頁 : www. el sevi er .com /l ocate / a p e n er gy 關(guān)于建筑墻體的一種相變材料的實驗評估Frédéric Kuznik a,*, Joseph Virgone ba 法 國 里 昂 國 家 科 學(xué) 研 究 中 心 的 熱 科 學(xué) 研 究 中 ,隸 屬 由 國 家 科 學(xué) 研 究 中 心 ,里 昂 INSA大 學(xué) , 里 昂 第 一 大 學(xué) 組 成 的 CETHIL這 個 混 合 的 研 究 單 位 ( UMR 5008) . 地 址 : Sadi Carnot,9 rue de la Physique, 69621 Villeurbanne Cedex, Franceb 里 昂 大 學(xué) 的 里 昂 前 DGCB實 驗 室 , 地 址 :ENTPE rue Maurice Audin, 69518 Vaulx-en-Velin Cedex, France論 文 信 息論文記錄 :2008 年 9月 17日送審2009 年 1月 5日修訂后的形式 送審2009 年 1月 6日 錄用2009 年 2月 13日 網(wǎng)上錄用關(guān)鍵詞 :相變斜紋布墻板儲能試驗研究溫度波動摘 要模型完全控制為可重復(fù)的典型的一天 (溫度和太陽能輻射通量) . PCM的影響進(jìn)行比較的結(jié)果,是通過對比3例復(fù)合墻板:夏季的一天,冬季的一天,秋日一天。結(jié)果表明:(1)通過各種情況下的測試,它的衰減系數(shù)在0.73和0.78之間,這是相當(dāng)有趣的用于建筑,尤其是建筑革新的材料;(2)空氣溫度降低到4.2℃房間里用PCM,為了增加舒適度更重要的是考慮墻體表面溫度;(3)房間里的PCM墻板增強(qiáng)自然對流,并且無熱分層現(xiàn)象與房間很相合;(4)實驗數(shù)值很詳細(xì),完全可以作為用來評估PCM的數(shù)學(xué)模型。2009 愛思唯爾有限公司保留所有權(quán)利。1. 簡介如今,熱能存儲系統(tǒng)對減少化石燃料的依賴是至關(guān)重要的,所以導(dǎo)致一個個更高效的環(huán)保能源出現(xiàn)[1]。建筑的熱舒適需求日益上升,能源的使用量也相應(yīng)增加。例如,在法國,建筑物的能源消耗與30年前相比增加了30%。住房和三級建筑大約負(fù)責(zé)消耗約46%的能量并且產(chǎn)生二氧化碳占排放總量的19%[2]。熱能存儲可以通過使用來完成如顯熱儲存或潛熱存儲。顯熱儲存是由已經(jīng)使用了幾個世紀(jì)的建筑來存儲同時被動釋放熱能,潛熱存儲與顯熱存儲相比更大體積的材料需要存儲等量的能源,。相變材料(PCM)的使用原理很簡單。隨著溫度的增加,材料的變化從固體到液體屬于吸熱反應(yīng),PCM吸收熱量。同樣,當(dāng)溫度降低時,從液體到固體材料的變化屬于放熱反應(yīng),PCM釋放熱量。輕質(zhì)建筑的主要缺點是他們的低熱慣性。顯然,他們由于外部冷卻,太陽能加熱或加熱負(fù)載很容易產(chǎn)生較大溫度的波動。使用PCM材料在這種建筑物墻壁可以降低溫度波動,尤其是在太陽能輻射負(fù)荷的情況下。所以這是一個潛在的方法來減少在已經(jīng)設(shè)計好的建筑中的能源消耗。因此通過這種趨勢證實了在過去20年的文獻(xiàn)中出現(xiàn)的眾多論文的正確性。[3 - 5]。在選擇PCM時,應(yīng)該是接近平均室溫融化/凍結(jié)范圍的材料。此外,白天溫度和太陽輻射波動應(yīng)該允許材料相變。同時許多因素影響PCM的選擇:天氣、建筑結(jié)構(gòu)和熱物理的道具等[6]。這就是為什么實驗必須進(jìn)行爆炸測試評估PCM的使用。在這項研究中,根據(jù)模擬季節(jié)一天的三個案例進(jìn)行測試,。第一種情況在夏天的一天進(jìn)行測試主要是因為夏季太陽輻射時間長PCM墻板能減少過熱。第二例在冬季,PCM綜合性能包括墻壁在白天儲存過剩能量,在夜釋間放它,為了檢查這個特性從而模擬冬季的一天。第三例測試選擇秋季,因為它的一天是一年中最長。本文的第一部分主要涉及書目的審查中使用的PCM建筑墻(第2部分)。本文的第三部分提出了試驗裝置,PCM綜合實驗測試單元和詳盡地實驗說明協(xié)議。在第四部分對第三部分的實驗結(jié)果進(jìn)行了有沒有PCM墻板的情況下分析比較其熱性能。最后,第5部分是存在的問題和本研究的主要結(jié)論。2. 書目的審查將PCM 納入建筑墻壁是用于提高存儲容量并減輕結(jié)構(gòu)重量。通常PCM是覆蓋在石膏或混凝土上。[7],將十二烷醇納入浮石混凝土砌塊,這樣就使得能源存儲、復(fù)合潛熱相對較低。這就是為什么實際應(yīng)用中最多的是將PCM浸漬在石膏板等多孔材料上。脂肪酸和有機(jī)相變材料的應(yīng)用[8 - 10]。各種建筑材料被用來評估他們的吸收特性和由此產(chǎn)生的復(fù)合材料,石膏能吸收多達(dá)25重量%的PCM。結(jié)果表明,石膏- PCM復(fù)合可以用來降低過熱。石膏墻板也在數(shù)值和實驗全面測試房間被研究[11]。新數(shù)值與實驗結(jié)果有很好的一致性.此外,顯示了一個使用的PCM減少過熱和減少能耗的方法。PCM可以用膠囊包裹后作為建筑材料使用。但是,復(fù)合材料的熱性能高度依賴于微型膠囊的特性[12],在[13]中,PCM膠囊封裝集成到石膏墻板的全尺寸測試展示了這種復(fù)合材料降低溫度4℃所用時間顯著減少而且耐熱溫度高于28℃。石膏的主要問題是應(yīng)用PCM的量的太多,可以測試到:最大重量比率大約是總重量的30%。為了克服這個問題,[14]可以填充PVC面板與聚乙二醇相變材料。結(jié)果表明,減小測試電池溫度振幅降低20℃??偟膩碚f,PCM在古典建筑材料的使用是有限的,盡可能將材料的一個重要數(shù)量控制在石膏重量的30%。本文測試的共聚物構(gòu)成的復(fù)合材料含60wt% 的石蠟。此外,10毫米厚度的表面重量測試PCM4.5㎏/㎡灰泥板值即8.1㎏/㎡ 。所以,它是一個很不錯的增強(qiáng)熱存儲容量的輕質(zhì)建筑材料,特別是墻體改造的建筑材料。3. 試驗裝置的描述本文的目的是評估一個復(fù)合PCM的使用比較研究。因此,帶來兩個系列的實驗,3.1節(jié),致力于是否有PCM物理參與復(fù)合相變墻板的界定測試。3.2節(jié)處理的描述全面測試房間MINIBAT。最后,在3.3節(jié),實驗協(xié)議的解釋說明。3.1. 相變材料測試產(chǎn)品測試,通過Du -橋德穆爾掃描儀觀察60%石蠟共聚物取得。復(fù)合PCM的最終形式(見圖1)是一個可變的5毫米厚度墻板,最合適的密度大約是900千克每立方米。PCM的厚度是商業(yè)妥協(xié)的結(jié)果,允許77%的最優(yōu)效率獲得1厘米厚度[15]。導(dǎo)熱系數(shù)的衡量使用安全扭力裝置測試[16]。液相導(dǎo)熱系數(shù)0.22 ,而在固相時減少約 0.18 。?kWm1?kWm冷卻速率為0.05。熱分析的范圍[-20℃;35℃]。提出了兩種曲線:freez—荷蘭國際集團(tuán)(ing)曲線(冷卻從35℃-20℃)和融化曲線(從-20℃加熱到35℃)。從DSC曲線,融化和凍結(jié)溫度分別13.6℃和23.5℃。在[5℃;30℃]的范圍衡量潛在的加熱融化和凍結(jié)特性,分別107.5 J/g和104.5J/g;和72.4J/g和71J/g。表1,列舉關(guān)于建筑材料熱能存儲數(shù)據(jù)。在次測試中上,本文中所述的復(fù)合相變材料墻壁是一個重要的潛在熱能存儲載體。這種特殊性由于可能統(tǒng)一PCM聚合物材料與傳統(tǒng)建筑材料的特性,例如:F. Kuznik, J. Virgone / Applied Energy 86 (2009) 2038 –2046 13.2. MINIBAT測試實驗全面測試房間MINIBAT位于測試大廳土木工程和城市規(guī)劃的里昂國家應(yīng)用科學(xué)研究院(法國里昂CETHIL-INSAde)。圖3代表測試裝置。測試房間的計劃是測試兩個相同的細(xì)胞附件1和2。但在我們的實驗中,只有細(xì)胞1被作為測試細(xì)胞用于其余的紙。 (熱 保 護(hù) ).第 六 點 是 一 個 從 屬 于 氣 候 室 的 隔 離 的 釉 面 外 觀 測 試 細(xì) 胞 。 太 陽能 模 擬 器 完 成 試 驗 裝 置 ,并 允 許 在 測 試 單 元 產(chǎn) 生 短 波 拉 迪 亞 。3.2.1. 熱保護(hù)熱 空 氣 由 空 氣 處 理 系 統(tǒng) 處 理 。 空 氣 擴(kuò) 散 器 是 安 裝 在 上 部 的 從 其 下 方空 氣 中 提 取 熱 保 護(hù) 空 氣 的 裝 置 。 空 氣 分 布 的 配 置 允 許 對 一 個 可 接 受 的 混合 空 氣 進(jìn) 行 熱 保 護(hù) ,內(nèi) 部 的 空 氣 溫 度 區(qū) 是 完 全 可 以 控 制 在 準(zhǔn) 確 值 的 士 0.5 ℃ .溫 度 熱 保 護(hù) 將 我 們 實 驗 模 擬 相 鄰 的 房 間 的 溫 度 控 制 在 20.5℃3.2.2. 氣候室氣 候 室 溫 度 -10℃ 到 40℃ 之 間 可 以 動 態(tài) 地 控 制 ,這 樣 可 以 生 成 任 何 模 擬自 然 環(huán) 境 。 這 里 被 用 來 獲 得 一 個 均 勻 的 溫 度3.2.3. 太陽模擬器為 了 有 一 個 光 源 ,再 現(xiàn) 了 最 好 的 太 陽 能 對 其 的 影 響 ,1000 W CSI燈 被 選中 (塔 爾 鹵 化 物 氣 體 放 電 燈 泡 )。 圖 4給 出 了 比 較 CSI燈 和 太 陽 能 的 光 譜[25]。十二個聚光燈被放置在三個橫線(見圖5),每一行被傾斜一個角度使得:lineAα=0°,lineBα=25° lineCα=50°。由此產(chǎn)生的輻射通量穿透外皮通過釉面墻。然后控制動態(tài)控制器的水平輻射通量的方式點燃了聚光燈的數(shù)量。3.2.4.測試單元墻 上 的 成 分 如 表 2中 描 述 。 材 料 的 物 理 特 性 在 表 3中 做 了 總 結(jié) 。 所 有不 透 明 的 墻 壁 覆 蓋 著 相 同 的 涂 層 :灰 色 分 散 涂 料 , 太 陽 能 吸 收 率 = ?s0.67, 全 球 輻 射 率 = 0.95。?g3.2.5. 測量設(shè)備所 有 面 的 溫 度 (內(nèi) 部 和 外 部 )使 用 分 辨 率 士 0.4℃ 熱 電 偶 測 量 的 ,每 個 面配 備 了 9個 熱 電 偶 。根 據(jù) 氣 候 室 的 溫 度 和 熱 保 護(hù) 的 不 同 , 使 用 精 度 0.3℃ 的 Pt100探 測 與測 量 測 試 單 元 的 空 氣 溫 度 。 所 有 單 元 一 致 使 用 輻 射 屏 蔽 裝 制 Pt100探 測 器 :第 一 個 在 房 間 中 央 的 高 度 85厘 米 ;第 二 個 是 170厘 米 的 高 度 。 不 同 的 時 間演 化 上 的 輻 射 通 量 密 度 釉 面 外 觀 使 用 日 射 強(qiáng) 度 計 測 量 。各 種 參 數(shù) 的 采 集 是 通 過 連 接 到 PC的 多 路 復(fù) 用 萬 能 表 實 現(xiàn) 。 整 個 設(shè) 備 的控 制 ,除 了 氣 候 控 制 ,都 是 由 軟 件 虛 擬 儀 器 控 制 。 兩 個 系 列 之 間 的 時 間 步 長選 擇 10mn, 每 個 測 試 的 持 續(xù) 時 間 是 三 天 。 最 后 提 出 了 關(guān) 注 兩 個 最 后 幾 天 ,第 一 個 被 用 來 消 除 初 始 條 件 的 影 響 。3.3. 試驗協(xié)議三 個 測 試 包 括 3.1部 分 中 描 述 細(xì) 胞 壁 被 修 改 ,不 動 ,復(fù) 合 PCM 。 這些 墻 的 位 置 所 示 如 圖 5:這 些 都 是 北 方 ,東 方 和 西 方 的 墻 壁 。 在 圖 6中 描 述 是否 有 PCM的 不 同 形 狀 的 墻 。F. Kuznik, J. Virgone / Applied Energy 86 (2009) 2038 –2046 3U-value 用于描述墻透射率被定義為 :1 :50 mm木 材 板 4 : 13mm 灰 泥2 : 10mm 灰 泥 5 : 5mm PCM3 : 50mm 樹 脂F(xiàn)ig. 6. 墻壁組成是否有復(fù)合PCM。Fig. 7. 氣候室實驗溫度T cl和垂直輻射通量密度E在玻璃立面上的實驗。墻層厚度, 熱導(dǎo)率。eiki由 于 復(fù) 合 相 變 性 質(zhì) ,U-value測 試 的 兩 堵 墻 很 近 ,在 忽 略 了 PCM復(fù) 合 絕緣 支 柱 問 題 后 得 出 U=0.59w/㎡ k這 一 重 要 特 性 。 測 試 本 文 中 給 出 的 三 種 類型 :? 夏 季 一 天 的 情 況 ,氣 候 室 的 溫 度 變 化 之 間 的 15℃ 和 30 ℃ 。 I在 這 種 情況 下 ,有 一 個 晚 上 冷 卻 過 程 。 為 此 ,通 風(fēng) 是 開 啟 在 [6-18 h]和 [30-42 h]之 間 (根 據(jù) 圖 7它 corre-sponds Tcl22.5℃ -時 間 數(shù) 據(jù) 的 規(guī) 模 不 對應(yīng) 于 一 天 時 間 尺 度 ),氣 流 速 92立 方 米 每 小 時 (例 如 3.8)? 秋 季 一 天 的 情 況 是 , 氣 候 室 溫 度 控 制 在 10℃ 到 18℃ 之 間 變 化 。? 動 機(jī) 一 天 的 情 況 是 , 氣 候 室 溫 度 控 制 在 5℃ 到 15℃ 之 間 , 并 且 在 其 中放 入 一 個 1500W的 20℃ 標(biāo) 準(zhǔn) 的 加 熱 裝 置 。 ( 當(dāng) 溫 度 地 獄 20時 它 就 會 加 熱 )太 陽 輻 射 通 量 相 同 的 的 情 況 下 測 試 。 氣 候 室 溫 度 T cl和 輻 射 通 量 (E)提出 了 圖 7的 情 況 。 顯 然 ,這 些 條 件 都 相 同 的 情 況 下 ,控 制 變 量 是 否 有 PCM材料 。 我 們 可 以 注 意 到 選 擇 控 制 24小 時 內(nèi) 氣 候 室 溫 度 和 投 影 儀 的 照 明 實 驗重 復(fù) 性 好 ???之 ,實 驗 方 法 允 許 我 們 利 用 錫 箔 做 一 個 完 整 的 邊 界 條 件 描 述 并 作 出等 溫 圖 ,需 要 做 的 溫 度 測 試 單 元 ,動 態(tài) 測 量 如 以 下 所 訴 :? 內(nèi) 外 壁 表 面 溫 度 ,? 房 間 空 氣 溫 度 在 房 間 的 中 間 兩 個 不 同 的 高 度 的 溫 度 ,? 氣 候 室 的 溫 度 ,? 太 陽 輻 射 的 強(qiáng) 度 和 輻 射 面 積 。Fig. 8. 在夏天的房間通風(fēng)高度0.85米和1.70米時溫度T1和T2。4. 分析比較熱的表現(xiàn)形式本 部 分 介 紹 PCM墻 板 熱 性 能 的 分 析 。 這 種 分 析 是 由 比 較 在 是 否 有 PCM復(fù) 合 墻 情 況 下 , 分 析 數(shù) 據(jù) 得 出 結(jié) 果 ,房 間 空 氣 溫 度 (圖 8,10和 12)和 修 改 后的 墻 表 面 溫 度 (圖 9,11和 13)。 4.1,4.2和 4.3部 分 是 在 這 項 研 究 中 對 三 個案 例 的 比 較 處 理 ,,4.4節(jié) 研 究 結(jié) 果 的 總 結(jié) 。4.1. 夏季夜間通風(fēng)的實驗結(jié)果圖 8顯 示 了 常 規(guī) 墻 板 和 PCM墻 板 房 間 空 氣 溫 度 資 料 。 定 期 常 規(guī) 墻 板 房 ,空 氣 溫 度 , 最 小 為 18.9 ℃ , 最 高 35.3℃ 和 36.6℃ 分 別 85厘 米 高 度 170厘米 探 測 得 到 。 兩 者 的 區(qū) 別 在 于 兩 個 探 測 器 在 不 同 高 度 的 最 高 溫 與 最 低 溫度 不 同 , PCM墻 板 房 最 低 19.8℃ 和 最 多 32.7℃ .由 此 可 見 PCM包 含 在 墻 上可 以 減 少 房 間 里 的 溫 度 波 動 :有 數(shù) 據(jù) 可 知 最 大 空 氣 溫 度 減 少 約 3.9℃ , 最小 空 氣 溫 度 增 加 約 0.8℃ 。摘 要 對 PCM影 響 室 內(nèi) 空 氣 溫 度 的 探 討 是 對 于 衰 減 因 子 f。 衰 減 因 子 是 室內(nèi) 空 氣 溫 度 與 PCM單 元 和 引 用 的 振 幅 測 試 單 元 的 空 氣 溫 度 (即 與 普 通 墻 板 )的 比 例 。 對 于 夏 天 的 情 況 ,衰 減 的 因 子 是 f=0.79。值 得 一 提 的 是 觀 察 溫 度 T的 問 題 是 , 發(fā) 現(xiàn) T 1和 2之 間 的 區(qū) 別 。 即 常 規(guī)墻 板 存 在 熱 分 層 現(xiàn) 象 (最 大 值 之 間 的 兩 個 測 試 值 存 在 1.3℃ 的 溫 度 差 異 )。這 對 PCM墻 板 熱 分 層 現(xiàn) 象 不 存 在 。 這 是 由 于 其 更 高 的 自 然 對 流 的 影 響 。 這種 影 響 改 善 熱 舒 適 (通 過 避 免 熱 分 層 現(xiàn) 象 ),正 如 我 們 所 知 ,以 前 從 未 被 觀 察到 。F. Kuznik, J. Virgone / Applied Energy 86 (2009) 2038 –2046 5圖 9顯 示 了 三 個 修 改 后 的 墻 壁 表 面 是 否 有 PCM材 料 情 況 下 的 房 間 的 平均 氣 溫 強(qiáng) 度 結(jié) 果 。 PCM壁 溫 度 波 動 低 于 普 通 墻 壁 ,東 部 和 西 部 的 墻 內(nèi) 部 溫度 相 似 。 會 發(fā) 現(xiàn) 溫 度 演 化 曲 線 在 是 否 有 PCM時 大 約 有 40 mn的 相 位 差 。 最后 所 有 3例 測 試 表 明 :在 墻 上 使 用 PCM材 料 是 有 必 要 的 。關(guān) 于 東 西 方 墻 壁 溫 度 曲 線 ,可 知 PCM材 料 導(dǎo) 致 溫 度 下 降 幅 度 約 3.5℃ .北 墻 的 這 種 下 降 的 幅 度 約 為 2.8 ℃ 。 這 個 值 低 于 東 部 和 西 部 墻 壁 ,導(dǎo) 致 太陽 輻 射 在 北 墻 更 重 要 。4.2秋季的實驗結(jié)果圖10顯示了PCM墻板和常規(guī)墻板房間空氣溫度資料。常規(guī)墻板,在不同時間測得空氣溫度最小值17.4℃和分別在高85厘米170厘米測得最高值30.8℃、33.5℃。PCM墻板,不同時間空氣溫度,最低17.8℃和最高30.7℃和29.0℃分別的探測高度85厘米和170厘米測得。因此PCM應(yīng)用在墻上可以減少房間里的氣溫波動:弗吉尼亞州最高氣溫減少約2.3℃而最低空氣溫度增加的0.4℃。秋 季 衰 減 因 子 f=0.78。圖 11顯 示 了 三 種 改 裝 墻 壁 表 面 的 平 均 氣 溫 ,并 以 是 否 有 PCM材 料 為 例 。關(guān) 于 東 西 方 墻 壁 溫 度 曲 線 、 PCM材 料 減 少 導(dǎo) 致 振 幅 約 2.6℃ .北 墻 的 這 種 振幅 減 少 1.3℃ 。4.3. 冬季的實驗結(jié)果圖12顯示了PCM墻板和常規(guī)墻板房間空氣溫度資料和。常規(guī)墻板,不同時間空氣溫度最低的18.6℃和18.1℃,最高30.4℃和32.2℃,分別在85厘米和170厘米高度測得。PCM板房,空氣溫度最低18.6℃和18.1℃和最高28.7℃和28.4℃,分別在85厘米和170厘米高度測得??芍狿CM應(yīng)用在墻上只允許減少最大的房間里的空氣溫度2℃。冬季的衰減因子f=0.73.圖13顯示了三個修改后的墻壁表面是否有PCM材料的的情況下平均氣溫強(qiáng)度,。關(guān)于東西方墻壁的氣溫曲線、PCM材料導(dǎo)致減少溫度振幅約2.9 ℃ 。北墻 ,這種波動減少約為1.9℃。F. Kuznik, J. Virgone / Applied Energy 86 (2009) 2038 –2046 74.4 結(jié)果與討論對PCM墻板進(jìn)行三種不同外部環(huán)境下的測試評估表明,與常規(guī)墻板相比3例PCM墻都能減少房間空氣溫度波動??諝鉁囟日穹乃p因子在0.73到0.78之間,衰減系數(shù)越低,越能有效的使用PCM,包括氣溫較低的冬天??偟膩碚f,PCM墻體測試表明其能保持房間內(nèi)的空氣溫度在最大的舒適區(qū),房間的空氣溫度波動最大值4.2℃。對增強(qiáng)熱舒適更重要的PCM的墻表面溫度也比普通的墻板低。通過觀察可知常規(guī)墻板存熱分層現(xiàn)象,但PCM墻板沒有。當(dāng)然,不存在熱分層現(xiàn)象意味著自然對流在PCM墻板房間里被PCM墻板增強(qiáng)。還需要進(jìn)一步的調(diào)查來評估這種效果,但它不是我們的論文的目的。5. 總結(jié)為了研究輕型圍護(hù)結(jié)構(gòu),進(jìn)行了墻壁是否包含PCM材料的實驗研究。這是一個罕見允許微分分析PCM的墻壁的研究,研究過程采用不同材料,同時控制熱量和輻射影響。設(shè)置了夏天,秋天和冬季不同的測試單元。采用PCM墻板降低美國人民房間的空氣溫度。觀察到PCM墻板的衰減因子在所有季節(jié)都是普通墻的0.7倍。墻表面溫度波動也就相應(yīng)減少了。對于PCM綜合應(yīng)用,能提高人體熱舒適的三個主要原因:? PCM材料應(yīng)用在墻上強(qiáng)烈降低過熱的效果(和存儲的能量釋放到房間的空氣使溫度最低)。? 墻墻表面溫度較低時使用PCM板能增強(qiáng)熱舒適,是由于加快輻射傳熱。? PCM材料增強(qiáng)了空氣的自然對流,避免了不舒服的熱集中。 為了驗證使用PCM墻板的輕重量圍護(hù)結(jié)構(gòu),進(jìn)一步的調(diào)查是必要的。必須進(jìn)行數(shù)值模擬,以研究獲得真正可靠的建筑材料。我們認(rèn)為,在本文中所描述的結(jié)果可以用作驗證數(shù)值作為參考。我們還需要看看修改位置后的PCM墻板對提高熱存儲的影響最后,因為試驗裝置的完整性,在這項研究中給出的數(shù)據(jù)可以用于PCM數(shù)值模擬的驗證。感謝作者希望感謝杜邦·德·穆爾社會的支持,特別是這個項目的負(fù)責(zé)人雷蒙德Reisdorf參考文獻(xiàn)[1] Dincer I, Rosen MA. Thermal energy storage – systems and applications. JohnWiley and Sons; 2002.[2] French Ministry of Ecology and Sustainable Development. Climate plan 2004:let’s act together to challenge of climate change, report; 2004.[3] Tyagi VV, Buddhi D. PCM thermal storage in buildings: a state of art. RenewSust Energy Rev 2007;11:1146 –66.[4] Khudhair AM, Farid MM. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manage 2004;45:263 –75.[5] Zhang Y, Zhou G, Lin K, Zhang Q, Di H. Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook. Build Environ2007;42:2197 –209.[6] Darkwa K, O’Callaghan PW, Tetlow D. Phase-change drywalls in a passive-solar building. Appl Energy 2006;83:425 –35.[7] Hawes DW, Feldman D, Banu D. Latent heat storage in building materials.Energy Build 1993;20:77 –86.[8] Feldman D, Khan MA, Banu D. Energy storage composite with an organic phase change material. Solar Energy Mater Solar Cells 1989;18:333 –41.[9] Feldman D, Shapiro M, Banu D, Fucks CJ. Fatty acids and their mixtures as phase change materials for thermal energy storage. Solar Energy Mater Solar Cells 1989;18:201 –16.[10] Feldman D, Banu D, Hawes D, Ghanbari E. Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Solar Energy Mater Solar Cells 1991;22:231 –42.[11] Athienitis AK, Liu C, Hawes D, Banu D, Feldman D. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Build Environ 1997;32:405 –10.[12] Hawlader MNA, Uddin MS, Khin MM. Microencapsulated PCM thermal-energystorage system. Appl Energy 2003;74:195 –202.[13] Schossig P, Henning HM, Gschwander S, Haussmann T. Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Mater Solar Cells 2005;89:297 –306.[14] Ahmad M, Bontemps A, Sall H, Quenard D. Thermal testing and numericalinvestigation of a prototype cell using light wallboard coupling vacuum isolation panels and phase change material. Energy Build 2006;38:673 –81.[15] Kuznik F, Virgone J, Noel J. Optimization of a phase change material wallboard for building use. Appl Therm Eng 2008;28:1291 –8.[16] ASTM. Standard test method for steady-state heat ?ux measurements andthermal transmission properties by means of the guarded-hot-plate apparatus. Norm C177; 2004.[17] Feldman D, Banu D, Hawes DW. Development and application of organic phase change mixtures in thermal storage gypsum wallboard. Solar Energy Mater Solar Cells 1995;36:147 –57.[18] Shilei L, Neng Z, Guohui F. Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage. Energy Build2006;38:708 –11.[19] Sari A, Karaipekli A. Preparation thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. Mater Chem Phys 2008;109:459 –64.[20] Shilei L, Guohui F, Neng Z, Li D. Experimental study and evaluation of latentheat storage in phase change materials wallboards. Energy Build2007;39:1088 –91.[21] Feldman D, Banu D. DSC analysis for the evaluation of an energy storing wallboard. Thermochim Acta 1996;272:243 –51.[22] Shilei L, Neng Z, Guohui F. Impact of phase change wall room on indoor thermal environment in winter. Energy Build 2006;38:18 –24.[23] Scalat S, Banu D, Hawes DW, Paris J, Haghighata F, Feldman D. Full scalethermal testing of latent heat storage in wallboard. Solar Energy Mater SolarCells 1996;44:49 –61.[24] Lee T, Hawes DW, Banu D, Feldman D. Control aspects of latent heat storage and recovery in concrete. Solar Energy Mater Solar Cells 2000;62:217 –37.[25] Allard F, Brau J, Inard C, Pallier JM. Thermal experiments of full-scale dwellingcells in arti?cial climatic conditions. Energy Build 1987;10:49 –58.[26] Zhou G, Yang Y, Wang X, Zhou S. Numerical analysis of effect os shape- stabilized phase change material plates in a building combined with night ventilation. Appl Energy 2009;86:52 –9.