2019屆高三數(shù)學(xué)12月月考試題 文.doc
《2019屆高三數(shù)學(xué)12月月考試題 文.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019屆高三數(shù)學(xué)12月月考試題 文.doc(10頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019屆高三數(shù)學(xué)12月月考試題 文 一、選擇題(本大題共l2小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中, 只有一項(xiàng)是符合題目要求的) 1.設(shè),集合,集合,則等于( ) A. B. C. D. 2.已知,其中為虛數(shù)單位,則 ( ) A. B. 1 C. 2 D. 3 3.設(shè)變量滿足約束條件,則的最大值為 ( ) A. B.2 C.3 D.4 4.已知向量a,b, c.若為實(shí)數(shù),(a+b) // c,則 ( ) A. B. C. D. 5.函數(shù)的零點(diǎn)所在的區(qū)間為 ( ) A. B. C. D. 6.圓x2+y2?2x?8y+13=0的圓心到直線ax+y?1=0的距離為1,則 ( ) A. ? B.? C. D.2 7.在等比數(shù)列中,已知,則( ) A.3 B. -3 C. 5 D. 8.函數(shù)的圖像在點(diǎn)處的切線斜率的最小值是( ) A.1 B. C.2 D. 9.已知?jiǎng)t等于( ) A. B. C. D. 10.函數(shù)的圖象大致是( ) 11.已知定義在上的奇函數(shù)滿足:且時(shí),,則 ( ) A. B. C. D. 12.已知正三角形ABC的邊長為,平面ABC內(nèi)的動(dòng)點(diǎn)P,M滿足,則的最大值是( ) A. B. C. D. 二、填空題(本大題共4小題,每小題5分,共20分) 13.已知數(shù)列中,,(),則數(shù)列的前9項(xiàng)和等于 。 14.已知點(diǎn),,,,則向量在向量方向上的投影是 15.設(shè)的內(nèi)角A,B,C的對(duì)邊分別為,且,則c=________. 16.長方體的各個(gè)頂點(diǎn)都在體積為的球O 的球面上,其中,則四棱錐O-ABCD 的體積的最大值為 . 三、解答題(本大題共6小題,共70分) 17.(本小題滿分12分)已知直線經(jīng)過兩條直線和的交點(diǎn),且與直線垂直. (1) 求直線的方程; (2)若圓C的圓心為點(diǎn)(3,0),直線被該圓所截得的弦長為,求圓C的標(biāo)準(zhǔn)方程. 18.(本小題滿分12分)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且。 (I)證明:sinAsinB=sinC; (II)若,求tanB。 19.(本小題滿分12分)已知數(shù)列是遞增的等比數(shù)列,且 (1)求數(shù)列的通項(xiàng)公式; (2)設(shè)為數(shù)列的前n項(xiàng)和,,求數(shù)列的前n項(xiàng)和。 20.(本小題滿分12分) 如圖,在四棱錐中,∥,,,平面平面,為等腰直角三角形,. (1)證明:; (2)若三棱錐的體積為,求的面積. 21.(本小題滿分12分) 已知函數(shù). (1)求函數(shù)的單調(diào)區(qū)間; (2)若恒成立,求的值. 22.[選修4-4:坐標(biāo)系與參數(shù)方程](本小題滿分10分) 直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線. (1)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,求,的極坐標(biāo)方程; (2)射線與異于極點(diǎn)的交點(diǎn)為,與的交點(diǎn)為,求. 23.[選修4-5:不等式選講](本小題滿分10分) 已知函數(shù). (1)若,求的取值范圍; (2)若存在,使得成立,求的取值范圍. 1-5 ABCBC 6-10 AACCD 11-12 AB 13. 27 14. 15. 4 16.2 17.(本小題滿分12分)已知直線經(jīng)過兩條直線和的交點(diǎn),且與直線垂直. (2) 求直線的方程; (2)若圓C的圓心為點(diǎn)(3,0),直線被該圓所截得的弦長為,求圓C的標(biāo)準(zhǔn)方程. 解:(1)由已知得:, 解得兩直線交點(diǎn)為, 設(shè)直線的斜率為,與垂直, 過點(diǎn),的方程即. (3) 設(shè)圓的半徑為,依題意,圓心到直線的距離為 則由垂徑定理得,∴ ∴圓的標(biāo)準(zhǔn)方程為. 18.(本小題滿分12分)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且。 (I)證明:sinAsinB=sinC; (II)若,求tanB。 (Ⅰ)根據(jù)正弦定理,可設(shè) 則a=ksin A,b=ksin B,c=ksinC. 代入中,有 ,可變形得 sin A sin B=sin Acos B=sin (A+B). 在△ABC中,由A+B+C=π,有sin (A+B)=sin (π–C)=sin C, 所以sin A sin B=sin C. (Ⅱ)由已知,b2+c2–a2=bc,根據(jù)余弦定理,有 . 所以sin A=. 由(Ⅰ),sin Asin B=sin Acos B +cos Asin B, 所以sin B=cos B+sin B, 故tan B==4. 19.(本小題滿分12分)已知數(shù)列是遞增的等比數(shù)列,且 (1)求數(shù)列的通項(xiàng)公式; (2)設(shè)為數(shù)列的前n項(xiàng)和,,求數(shù)列的前n項(xiàng)和。 (1)設(shè)等比數(shù)列的公比為, 所以有,。 聯(lián)立兩式可得或者。 又因?yàn)閿?shù)列為遞增數(shù)列,所以。 數(shù)列的通項(xiàng)公式為。 (2)根據(jù)等比數(shù)列的求和公式,有。 所以數(shù)列的通項(xiàng)公式為,所以。 20.(本小題滿分12分) 如圖,在四棱錐中,∥,,,平面平面,為等腰直角三角形,. (1)證明:; (2)若三棱錐的體積為,求的面積. 解:(1)因?yàn)槠矫嫫矫妫矫嫫矫?, 所以平面.又∥,平面.平面, 又為等腰直角三角形,,有 平面,又平面…………6分 (2)設(shè),則,過作于,則. 又平面平面,平面平面=平面. 又. 中,.中,. …………12分 21.(本小題滿分12分) 已知函數(shù). (1)求函數(shù)的單調(diào)區(qū)間; (2)若恒成立,求的值. (1)依題意,, 令,解得,故,2分 故當(dāng)時(shí),函數(shù)單調(diào)遞減,當(dāng)時(shí),函數(shù)單調(diào)遞增; 故函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.4分 (2),其中, 由題意知在上恒成立,, 由(1)可知,∴,8分 ∴,記,則,令,得.9分 當(dāng)變化時(shí),,的變化情況列表如下: + 0 - 極大值 ∴,故,當(dāng)且僅當(dāng)時(shí)取等號(hào), 又,從而得到.12分 22.[選修4-4:坐標(biāo)系與參數(shù)方程](本小題滿分10分) 直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線. (1)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,求,的極坐標(biāo)方程; (2)射線與異于極點(diǎn)的交點(diǎn)為,與的交點(diǎn)為,求. (1)曲線:(為參數(shù))化為普通方程為, 所以曲線的極坐標(biāo)方程為,3分 曲線的極坐標(biāo)方程為.5分 (2)射線與曲線的交點(diǎn)的極徑為,7分 射線與曲線的交點(diǎn)的極徑滿足, 解得,9分 所以.10分 23.[選修4-5:不等式選講](本小題滿分10分) 已知函數(shù). (1)若,求的取值范圍; (2)若存在,使得成立,求的取值范圍. (1)由得, ∴,或,或,3分 解得.5分 (2)當(dāng)時(shí),,6分 ∴存在,使得即成立, ∴存在,使得成立,8分 ∴,∴.10分- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019屆高三數(shù)學(xué)12月月考試題 2019 屆高三 數(shù)學(xué) 12 月月 考試題
鏈接地址:http://m.appdesigncorp.com/p-4345234.html