九年級(jí)數(shù)學(xué)下冊(cè) 第二十八章 銳角三角函數(shù) 28.2 解直角三角形及其應(yīng)用 28.2.1 解直角三角形教案 新人教版.doc
《九年級(jí)數(shù)學(xué)下冊(cè) 第二十八章 銳角三角函數(shù) 28.2 解直角三角形及其應(yīng)用 28.2.1 解直角三角形教案 新人教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《九年級(jí)數(shù)學(xué)下冊(cè) 第二十八章 銳角三角函數(shù) 28.2 解直角三角形及其應(yīng)用 28.2.1 解直角三角形教案 新人教版.doc(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
解直角三角形 教材分析解直角三角形是在學(xué)習(xí)了勾股定理、銳角三角函數(shù)的基礎(chǔ)上繼續(xù)研究由直角三角形中的已知元素求出其余未知元素的問(wèn)題。一個(gè)直角三角形有三個(gè)角、三條邊這六個(gè)元素,解直角三角形就是由已知元素求出未知元素的過(guò)程。在直角三角形中除了一個(gè)直角外,只要知道兩個(gè)元素(其中至少有一條邊),就能求出其他元素。本節(jié)教材首先從比薩斜塔的傾斜程度這個(gè)實(shí)際問(wèn)題入手,給學(xué)生創(chuàng)設(shè)問(wèn)題情境,抽象出數(shù)學(xué)問(wèn)題,從而引出解直角三角形的概念。接著教材引導(dǎo)學(xué)生全面梳理直角三角形中邊角之間的關(guān)系,歸納出解直角三角形的一般方法,并以例題的形式對(duì)如何解直角三角形進(jìn)行示范。 教學(xué)目標(biāo)【知識(shí)與能力目標(biāo)】1、理解解直角三角形的概念;2、理解直角三角形中邊與邊的關(guān)系,角與角的關(guān)系和邊與角的關(guān)系,能運(yùn)用直角三角形的兩銳角互余、勾股定理及銳角三角函數(shù)解直角三角形。【過(guò)程與方法目標(biāo)】通過(guò)綜合運(yùn)用勾股定理,直角三角形的兩個(gè)銳角互余及銳角三角函數(shù)解直角三角形,逐步培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力;【情感態(tài)度價(jià)值觀目標(biāo)】在解直角三角形的過(guò)程中,滲透轉(zhuǎn)化和數(shù)形結(jié)合的數(shù)學(xué)思想,促進(jìn)數(shù)學(xué)思維的發(fā)展。 教學(xué)重難點(diǎn)【教學(xué)重點(diǎn)】掌握解直角三角形的一般方法?!窘虒W(xué)難點(diǎn)】選擇適當(dāng)?shù)年P(guān)系式解直角三角形。 課前準(zhǔn)備 多媒體課件、教具等。 教學(xué)過(guò)程一、創(chuàng)設(shè)情境,引入新課問(wèn)題1 你能說(shuō)一說(shuō)勾股定理的內(nèi)容嗎?直角三角中兩銳角之間有何關(guān)系?如圖,直角三角形ABC中,C=90,三邊長(zhǎng)分別為a、b、c。A、B的正弦、余弦和正切值分別是什么?問(wèn)題2 你現(xiàn)在可以解決本章引言提出的比薩斜塔傾斜程度的問(wèn)題嗎?1972年的情形:如圖,設(shè)塔頂中心點(diǎn)為B,塔身中心線與垂直中心線的夾角為A,過(guò)點(diǎn)B向垂直中心線引垂線,垂足為點(diǎn)C。在RtABC中,C=90,BC=5。2m,AB=54。5m,因此,利用計(jì)算器可得A528。追問(wèn):類似地,可以求出2001年糾偏后塔身中心線與垂直中心線的夾角。你能求出來(lái)嗎?二、探索發(fā)現(xiàn),形成新知問(wèn)題3 問(wèn)題2中解決比薩斜塔傾斜程度問(wèn)題時(shí)把它抽象成數(shù)學(xué)問(wèn)題后,已知的是這個(gè)直角三角形的哪幾個(gè)元素?所求的是什么元素?解決問(wèn)題的過(guò)程稱作什么?歸納:已知直角三角形的斜邊和一條直角邊,求它的銳角的度數(shù)。概念:一般地,直角三角形中,除直角外,共有五個(gè)元素,即三條邊和二個(gè)銳角,由直角三角形中除直角外的已知元素,求出其余未知元素的過(guò)程,叫做解直角三角形。問(wèn)題4 在直角三角形中,除直角外的五個(gè)元素之間有哪些關(guān)系?知道五個(gè)元素中的幾個(gè),就可以求其余元素?歸納:如圖:直角三角形ABC中,C=90,a、b、c、A、B這五個(gè)元素之間的關(guān)系是:三邊之間關(guān)系a2 +b2 =c2 (勾股定理) 兩銳角之間關(guān)系A(chǔ)+B=90。邊角之間的關(guān)系,。知道其中的兩個(gè)元素(至少有一個(gè)是邊),就可以求出其余三個(gè)未知元素。追問(wèn)1:在已知的兩個(gè)元素中,為什么必有一條邊呢?總結(jié):無(wú)論是利用勾股定理,還是利用銳角三角函數(shù)來(lái)解直角三角形,至少需要知道一條邊的值。其實(shí),如果知道的兩個(gè)條件都是角,這個(gè)直角三角形的大小不是唯一確定的,所以不能解這個(gè)直角三角形。三、運(yùn)用新知,深化理解例1:如圖,在RtABC中,C90,解這個(gè)三角形。解:,A60,AB=2AC=。說(shuō)明:解直角三角形的方法很多,靈活多樣,先讓學(xué)生獨(dú)立思考得出解題思路,然后再師生共同總結(jié)得出簡(jiǎn)便易行的解決方案,最后教師板演示范解題過(guò)程。例2:如圖,在RtABC中,C90,B35,b=20,解這個(gè)直角三角形(結(jié)果保留小數(shù)點(diǎn)后一位)。解:。 ,。, 。追問(wèn)1:你還有其他方法求出c嗎?歸納:如可以A的余弦值求c,等等。追問(wèn)2:如果已知一邊一角,如何解直角三角形?歸納:先求另外一角,然后選取恰當(dāng)?shù)暮瘮?shù)關(guān)系式求另外兩邊。計(jì)算時(shí),盡量使用題中原始數(shù)據(jù)計(jì)算,這樣誤差小些。例3 如圖,CD是RtABC斜邊上的高,,求AB,AC,A,B(精確到1)。分析:在RtABC中,僅已知一條直角邊BC的長(zhǎng),不能直接求解。注意到BC和CD在同一個(gè)RtBCD中,因此可先解這個(gè)直角三角形。 解:在RtBCD中,。用計(jì)算器求得B5444,于是A90-B3516。在RtABC中,。四、學(xué)生練習(xí),鞏固新知練習(xí)1 在ABC中,C=90,根據(jù)下列條件解直角三角形:(1)c10,b30;(2)B=72,c14;(3)B=30,。練習(xí)2 在ABC中,C為直角,AC=6,BAC的平分線,解此直角三角形。五、課堂小結(jié),梳理新知回顧本課所學(xué)主要內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題:1、解直角三角形的定義?2、解直角三角形所用到的知識(shí)?3、解直角三角形必須知道幾個(gè)元素?4、我們解直角三角形中常常用到的方法?等等。六、布置作業(yè),優(yōu)化新知1、教科書習(xí)題28。2第1題;(必做題)2、教科書習(xí)題28。2第6題。(選做題) 教學(xué)反思略- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 九年級(jí)數(shù)學(xué)下冊(cè) 第二十八章 銳角三角函數(shù) 28.2 解直角三角形及其應(yīng)用 28.2.1 解直角三角形教案 新人教版 九年級(jí) 數(shù)學(xué) 下冊(cè) 第二 十八 銳角 三角函數(shù) 直角三角形 及其 應(yīng)用 教案 新人
鏈接地址:http://m.appdesigncorp.com/p-3360563.html