2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 第八章 第6節(jié) 直線與圓錐曲線的位置關(guān)系練習(xí).doc
《2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 第八章 第6節(jié) 直線與圓錐曲線的位置關(guān)系練習(xí).doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 第八章 第6節(jié) 直線與圓錐曲線的位置關(guān)系練習(xí).doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 第八章 第6節(jié) 直線與圓錐曲線的位置關(guān)系練習(xí) 一、選擇題 1.已知拋物線y=-x2+3上存在關(guān)于直線x+y=0對稱的相異兩點A,B,則|AB|等于( ) A.3 B.4 C.3 D.4 [解析] 設(shè)直線AB的方程為y=x+b,A(x1,y1),B(x2,y2),由?x2+x+b-3=0?x1+x2=-1,得AB的中點M. 又M在直線x+y=0上,可求出b=1, 則|AB|==3. [答案] C 2.(xx泰安模擬)斜率為的直線與雙曲線-=1(a>0,b>0)恒有兩個公共點,則雙曲線離心率的取值范圍是( ) A.[2,+∞) B.(2,+∞) C.(1,) D.(,+∞) [解析] 因為斜率為的直線與雙曲線-=1恒有兩個公共點,所以>,所以e==>=2. 所以雙曲線離心率的取值范圍是(2,+∞). [答案] B 3.(xx西安模擬)已知任意k∈R,直線y-kx-1=0與橢圓+=1(m>0)恒有公共點,則實數(shù)m的取值范圍是( ) A.(0,1) B.(0,5) C.[1,5)∪(5,+∞) D.[1,5) [解析] 直線y=kx+1過定點(0,1),只要(0,1)在橢圓+=1上或其內(nèi)部即可.從而m≥1,又因為橢圓+=1中m≠5,所以m的取值范圍是[1,5)∪(5,+∞). [答案] C 4.(xx衡水模擬)若雙曲線-=1(a>0,b>0)與橢圓+=1(m>b>0)的離心率之積等于1,則以a,b,m為邊長的三角形一定是( ) A.等腰三角形 B.直角三角形 C.銳角三角形 D.鈍角三角形 [解析] 設(shè)雙曲線離心率為e1,橢圓離心率為e2, 所以e1= ,e2= , 故e1e2= =1 ?(m2-a2-b2)b2=0,即a2+b2-m2=0, 所以,以a,b,m為邊長的三角形為直角三角形. [答案] B 5.(xx嘉定模擬)過點P(1,1)作直線與雙曲線x2-=1交于A,B兩點,使點P為AB中點,則這樣的直線( ) A.存在一條,且方程為2x-y-1=0 B.存在無數(shù)條 C.存在兩條,方程為2x(y+1)=0 D.不存在 [解析] 設(shè)A(x1,y1),B(x2,y2),則x1+x2=2,y1+y2=2,則x- y=1,x- y=1, 兩式相減得(x1-x2)(x1+x2)- (y1-y2)(y1+y2)=0,所以x1-x2= (y1-y2),即kAB=2, 故所求直線方程為y-1=2(x-1),即2x-y-1=0. 聯(lián)立 可得2x2-4x+3=0,但此方程沒有實數(shù)解,故這樣的直線不存在.故選D. [答案] D 6.(xx杭州模擬)F為橢圓+y2=1的右焦點,第一象限內(nèi)的點M在橢圓上,若MF⊥x軸,直線MN與圓x2+y2=1相切于第四象限內(nèi)的點N,則|NF|等于( ) A. B. C. D. [解析] 因為MF⊥x軸,F(xiàn)為橢圓+y2=1的右焦點,所以F(2,0),M,設(shè)lMN:y-=k(x-2), N(x,y),則O到lMN的距離d==1,解得k=(負值舍去). 又因為? 即N,所以|NF|==. [答案] A 二、填空題 7.已知兩定點M(-2,0),N(2,0),若直線上存在點P,使得|PM|-|PN|=2,則稱該直線為“A型直線”,給出下列直線:①y=x+1;②y=x+2;③y=-x+3;④y=-2x.其中是“A型直線”的序號是________. [解析] 由條件知考慮給出直線與雙曲線x2-=1右支的交點情況,作圖易知①③直線與雙曲線右支有交點,故填①③. [答案]?、佗? 8.(xx無錫模擬)若直線mx+ny=4與⊙O:x2+y2=4沒有交點,則過點P(m,n)的直線與橢圓+=1的交點個數(shù)是________. [解析] 由題意知:>2,即<2,所以點P(m,n)在橢圓+=1的內(nèi)部,故所求交點個數(shù)是2個. [答案] 2 9.已知雙曲線左、右焦點分別為F1,F(xiàn)2,點P為其右支上一點,∠F1PF2=60,且S△F1PF2=2,若|PF1|,|F1F2|2,|PF2|成等差數(shù)列,則該雙曲線的離心率為________. [解析] 設(shè)|PF1|=m,|PF2|=n(m>n),雙曲線方程為-=1(a>0,b>0),因此有m-n=2a,|F1F2|=2c,S△PF1F2=mn=2,mn=8. 又m+n=4c2=2c2?(m+n)2=4c4.① 由余弦定理cos∠F1PF2= ==?m2+n2=8+4c2 ?(m+n)2=4c2+24.② ①②兩式聯(lián)立解得c2=3?c=, 所以,??2a=2,a=1,e==. [答案] 三、解答題 10.(xx衡水模擬)在平面直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b≥1)的離心率e=,且橢圓C上一點N到點Q(0,3)的距離最大值為4,過點M(3,0)的直線交橢圓C于點A,B. (1)求橢圓C的方程. (2)設(shè)P為橢圓上一點,且滿足+=t(O為坐標(biāo)原點),當(dāng)|AB|<時,求實數(shù)t的取值范圍. [解] (1)因為e2===,所以a2=4b2, 則橢圓方程為+=1,即x2+4y2=4b2. 設(shè)N(x,y),則|NQ| == ==. 當(dāng)y=-1時,|NQ|有最大值為=4, 解得b2=1,所以a2=4,橢圓方程是+y2=1. (2)設(shè)A(x1,y1),B(x2,y2),P(x0,y0), AB方程為y=k(x-3),由 整理得(1+4k2)x2-24k2x+36k2-4=0. 由Δ=(24k2)2-16(9k2-1)(1+4k2)>0,得k2<. x1+x2=,x1x2=. 所以+=(x1+x2,y1+y2)=t(x0,y0), 則x0=(x1+x2)=,y0=(y1+y2) =[k(x1+x2)-6k]=. 由點P在橢圓上,得+=4, 化簡得36k2=t2(1+4k2)① 又由|AB|=|x1-x2|<,即(1+k2)[(x1+x2)2-4x1x2]<3,將x1+x2,x1x2代入得 (1+k2)<3, 化簡,得(8k2-1)(16k2+13)>0, 則8k2-1>0,k2>, 所以<k2<② 由①,得t2==9-, 聯(lián)立②,解得3<t2<4, 所以-2<t<-或<t<2. 11.(xx石家莊模擬)橢圓+=1(a>b>0)的左、右焦點分別為F1(-1,0)、F2(1,0),過F1作與x軸不重合的直線l交橢圓于A、B兩點. (1)若△ABF2為正三角形,求橢圓的離心率; (2)若橢圓的離心率滿足0<e<,O為坐標(biāo)原點, 求證:|OA|2+|OB|2<|AB|2. (1)解:由橢圓的定義知|AF1|+|AF2|=|BF1|+|BF2|,∵|AF2|=|BF2|,∴|AF1|=|BF1|,即F1F2 為邊AB上的中線,∴F1F2⊥AB. 在Rt△AF1F2中,cos 30=,則=, ∴橢圓的離心率為. (2)證明:設(shè)A(x1,y1),B(x2,y2),∵0<e<,c=1, ∴a>1+. ①當(dāng)直線AB與x軸垂直時,+=1,y2=,=x1x2+y1y2=1-==,∵a2>,∴<0, ∴∠AOB恒為鈍角,∴|OA|2+|OB|2<|AB|2. ②當(dāng)直線AB不與x軸垂直時,設(shè)直線AB的方程為: y=k(x+1),代入+=1, 整理得,(b2+a2k2)x2+2k2a2x+a2k2-a2b2=0, ∴x1+x2=,x1x2=, =x1x2+y1y2 =x1x2+k2(x1+1)(x2+1) =x1x2(1+k2)+k2(x1+x2)+k2 = == 令m(a)=-a4+3a2-1,由①可知m(a)<0, ∴∠AOB恒為鈍角,∴恒有|OA|2+|OB|2<|AB|2. 12.(xx長春三校調(diào)研)在直角坐標(biāo)系xOy中,點M,點F為拋物線C:y=mx2(m>0)的焦點,線段MF恰被拋物線C平分. (1)求m的值; (2)過點M作直線l交拋物線C于A,B兩點,設(shè)直線FA,F(xiàn)M,F(xiàn)B的斜率分別為k1,k2,k3,問k1,k2,k3能否成公差不為零的等差數(shù)列?若能,求直線l的方程;若不能,請說明理由. 解:(1)由題得拋物線C的焦點F的坐標(biāo)為,線段MF的中點N在拋物線C上, ∴-=m,8m2+2m-1=0, ∴m=(m=-舍去). (2)由(1)知拋物線C:x2=4y,F(xiàn)(0,1). 設(shè)直線l的方程為y+=k(x-2),A(x1,y1),B(x2,y2), 由得x2-4kx+8k+2=0, Δ=16k2-4(8k+2)>0, ∴k<或k>. 由根與系數(shù)的關(guān)系得 假設(shè)k1,k2,k3能成公差不為零的等差數(shù)列,則k1+k3=2k2. 而k1+k3=+= = = ==, k2==-, ∴=-,8k2+10k+3=0,解得k=-(符合題意)或k=-(不合題意,舍去). ∴直線l的方程為y+=-(x-2), 即x+2y-1=0.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 第八章 第6節(jié) 直線與圓錐曲線的位置關(guān)系練習(xí) 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 第八 直線 圓錐曲線 位置 關(guān)系 練習(xí)
鏈接地址:http://m.appdesigncorp.com/p-3243743.html