安徽省2019年中考數(shù)學(xué)一輪復(fù)習(xí) 第二部分 熱點(diǎn)專題突破 專題6 在圖形運(yùn)動(dòng)中探究課件.ppt
《安徽省2019年中考數(shù)學(xué)一輪復(fù)習(xí) 第二部分 熱點(diǎn)專題突破 專題6 在圖形運(yùn)動(dòng)中探究課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《安徽省2019年中考數(shù)學(xué)一輪復(fù)習(xí) 第二部分 熱點(diǎn)專題突破 專題6 在圖形運(yùn)動(dòng)中探究課件.ppt(24頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專題六在圖形運(yùn)動(dòng)中探究,“形”動(dòng),這里包括點(diǎn)動(dòng)、線動(dòng)和形動(dòng),而初中階段一定是以點(diǎn)動(dòng)問題為最重要.形動(dòng),則一定會(huì)引起圖形中其他部分的形狀、大小和位置發(fā)生變化,研究這些變化規(guī)律,就形成數(shù)學(xué)問題.形動(dòng)產(chǎn)生的數(shù)學(xué)問題有時(shí)會(huì)和函數(shù)知識(shí)相聯(lián)系,如2016年安徽數(shù)學(xué)中考第22題、2018年安徽數(shù)學(xué)中考第10題等就是和二次函數(shù)知識(shí)相聯(lián)系;有時(shí)也會(huì)和點(diǎn)的軌跡等知識(shí)相聯(lián)系,如2016、2017年安徽數(shù)學(xué)中考的第10題以及2018年安徽數(shù)學(xué)中考第14題都是和點(diǎn)的軌跡(弧和直線)相聯(lián)系.有關(guān)與函數(shù)知識(shí)相聯(lián)系的問題我們將在本書《專題八函數(shù)圖象,建模解題》中具體解決,這里只是點(diǎn)到為止.,類型1,類型2,“形”動(dòng)“腦”動(dòng),函數(shù)解題典例1如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)P是AB邊上的一個(gè)動(dòng)點(diǎn),連接CP,過點(diǎn)P作PC的垂線交AD于點(diǎn)E,以PE為邊作正方形PEFG,頂點(diǎn)G在線段PC上,對(duì)角線EG,PF相交于點(diǎn)O.在點(diǎn)P從點(diǎn)A到點(diǎn)B的運(yùn)動(dòng)過程中,△APE的外接圓的圓心也隨之運(yùn)動(dòng),求該圓心到AB邊的距離的最大值.,類型1,類型2,【解析】由題意可得EP為Rt△APE的外接圓的直徑,PE的中點(diǎn)M即為圓心,過點(diǎn)M作MN⊥AB于點(diǎn)N,∴MN∥AE,由MN∥AE可得成比例線段,從而得到MN關(guān)于其他線段的函數(shù)關(guān)系式,利用二次函數(shù)的最大值可求MN的最大值.,類型1,類型2,【名師點(diǎn)撥】(1)本題的關(guān)鍵在于當(dāng)點(diǎn)P在AB邊上移動(dòng)時(shí),雖然△APE的外接圓的圓心M也隨之運(yùn)動(dòng),但△MNP和△PBC一直保持相似,在動(dòng)中找到△MNP∽△PBC這個(gè)規(guī)律性的結(jié)論,得到.再設(shè)NP=x,MN=y,得到y(tǒng)與x的函數(shù)關(guān)系式,利用函數(shù)知識(shí)解答.注意經(jīng)歷“圖形運(yùn)動(dòng)→圖形規(guī)律→函數(shù)式→問題解決”這個(gè)過程,感悟用“函數(shù)”解“圖形”這種方法.(2)“形”動(dòng)不僅可以得到二次函數(shù),還可以得到一次函數(shù)和反比例函數(shù),這類問題在本書《專題二用“數(shù)”解“形”》中已有詳細(xì)解讀,這里不再贅述.,類型1,類型2,“形”動(dòng)“腦”動(dòng),軌跡解題典例2(2018安徽第14題)矩形ABCD中,AB=6,BC=8.點(diǎn)P在矩形ABCD的內(nèi)部,點(diǎn)E在邊BC上,滿足△PBE∽△DBC.若△APD是等腰三角形,則PE的長(zhǎng)為.,類型1,類型2,【解析】本題中找到滿足條件的點(diǎn)P,E很關(guān)鍵,而其中點(diǎn)P尤為關(guān)鍵.∵△APD是等腰三角形,即PA=PD或DP=DA或PA=AD.當(dāng)PA=PD時(shí),則點(diǎn)P在AD的垂直平分線MN上(設(shè)直線MN與AD,BC兩邊的交點(diǎn)為M,N),又點(diǎn)P在矩形的內(nèi)部,∴點(diǎn)P在線段MN上,當(dāng)滿足△PBE∽△DBC時(shí),且點(diǎn)E在邊BC上,∴點(diǎn)E與N重合,則PE為△BDC的中位線(如圖1),即PE=3;當(dāng)DP=DA時(shí),即點(diǎn)P在以D為圓心,DA為半徑的圓弧上,又點(diǎn)P在矩形的內(nèi)部,且△PBE∽△DBC,即可得△PBE(如圖2),這時(shí)點(diǎn)P在線段BD上,且DP=DA=8,PE⊥BC,由△PBE∽△DBC,可得;當(dāng)PA=AD時(shí),即點(diǎn)P在以A為圓心,AD為半徑的圓弧上,又點(diǎn)P在矩形的內(nèi)部,如圖3,易得∠PBE<∠DBC,即△PBE∽△DBC不可能成立,綜上,PE的長(zhǎng)為3或.,類型1,類型2,命題拓展考向一利用點(diǎn)動(dòng)成直線解題有關(guān)點(diǎn)的運(yùn)動(dòng)軌跡還有很多,如本書《專題四利用圖形變換添加輔助線》中的典例2直線l也是點(diǎn)的軌跡.考向二利用點(diǎn)動(dòng)前后保持圖形相似的特征解題(2018合肥包河區(qū)一模)如圖,在△ABC中,已知AB=AC=6,BC=8,P是BC邊上一動(dòng)點(diǎn)(P不與點(diǎn)B,C重合),Q是AC上另一動(dòng)點(diǎn)(Q不與點(diǎn)A,C重合),運(yùn)動(dòng)時(shí)始終保持∠APQ=∠B.當(dāng)△APQ為等腰三角形時(shí),則PB的長(zhǎng)為.【解析】當(dāng)AP=PQ時(shí),易得△ABP≌△PCQ,∴PC=AB=6,即PB=2;當(dāng)AQ=PQ時(shí),易得△ABC∽△PAC,∴PC=4.5,即PB=3.5;當(dāng)AQ=AP時(shí),則∠AQP=∠APQ=∠C,此時(shí)P與B重合,不合題意.綜上,PB的長(zhǎng)為2或3.5.,2或3.5,1,2,3,4,5,6,7,8,9,10,11,1.如圖,在△ABC中,BC=8,AB=,∠B=45,直線l從A向BC平行移動(dòng),分別與AB,AC交于M,N,設(shè)MN=x,點(diǎn)M到BC的距離為y,則y關(guān)于x的函數(shù)圖象的大致形狀是(),B,1,2,3,4,5,6,7,8,9,10,11,2.如圖,△AOB為等邊三角形,且邊長(zhǎng)為定長(zhǎng),C為射線BA上一個(gè)動(dòng)點(diǎn),連接OC,以O(shè)C為邊作等邊三角形△COD,設(shè)OA為x,點(diǎn)D到射線BO的距離為y,當(dāng)x增大時(shí),y值()A.不變B.增大C.減小D.不確定【解析】過點(diǎn)D作DE⊥BO于點(diǎn)E,過點(diǎn)O作OM⊥AB于點(diǎn)M,∵B,O,E在同一條直線上,∴∠AOC+∠DOE=180-60-60=60,∵∠AOC+∠ACO=60,∴∠ACO=∠DOE,易證△OCM≌△DOE,,B,1,2,3,4,5,6,7,8,9,10,11,3.如圖,在∠AOB的一邊OA上截取線段OC=2,P,Q分別是另一邊的兩個(gè)動(dòng)點(diǎn),運(yùn)動(dòng)中時(shí)刻保持∠OCP=∠OQC,記OP=x,OQ=y,則y關(guān)于x的函數(shù)圖象大致是(),D,1,2,3,4,5,6,7,8,9,10,11,B,A.1B.2C.3D.4,【解析】直線滿足條件①,則以D為圓心,為半徑作圓,那么直線是圓D的切線.直線滿足條件②有兩種情況:一是直線與AC平行,這時(shí)與圓D相切的直線有兩條(如圖所示);二是直線經(jīng)過AC的中點(diǎn)O,這時(shí)直線與圓D相交,不可能相切,故這樣的直線不存在.綜上可知,滿足條件的直線共有兩條.,1,2,3,4,5,6,7,8,9,10,11,5.如圖,在正方形ABCD中,AB=3cm,動(dòng)點(diǎn)M自A點(diǎn)出發(fā)沿AB方向以每秒1cm的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N自D點(diǎn)出發(fā)沿折線DC-CB以每秒2cm的速度運(yùn)動(dòng),到達(dá)B點(diǎn)時(shí)運(yùn)動(dòng)同時(shí)停止,設(shè)△AMN的面積為y(cm2),運(yùn)動(dòng)時(shí)間為x(秒),則下列圖象中能大致反映y與x之間的函數(shù)關(guān)系的是(),A,1,2,3,4,5,6,7,8,9,10,11,1,2,3,4,5,6,7,8,9,10,11,6.如圖,在△ABC中,∠C=90,AC=3,BC=4,點(diǎn)D,E分別在AC,BC上移動(dòng)(點(diǎn)D,E均不與△ABC的頂點(diǎn)重合),移動(dòng)時(shí)保持∠DEC=∠A,設(shè)CD=x,DE=y.則y關(guān)于x的函數(shù)關(guān)系式為.,1,2,3,4,5,6,7,8,9,10,11,7.等腰△ABC中,頂角A為40,P為△ABC所在的平面上一動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)A在BC所在直線的同側(cè)),P到A的距離等于BC,且BP=BA,則∠PBC的度數(shù)為.,30或110,1,2,3,4,5,6,7,8,9,10,11,8.(2018廣州節(jié)選)設(shè)P(x,0)是x軸上的一個(gè)動(dòng)點(diǎn),它與原點(diǎn)的距離為y1.求y1關(guān)于x的函數(shù)解析式,并畫出這個(gè)函數(shù)的圖象.解:∵P(x,0)與原點(diǎn)的距離為y1,∴當(dāng)x≥0時(shí),y1=OP=x,當(dāng)x<0時(shí),y1=OP=-x,∴y1關(guān)于x的函數(shù)解析式為即為y=|x|,函數(shù)圖象如圖所示.,1,2,3,4,5,6,7,8,9,10,11,9.如圖,在四邊形ABCD中,∠B=60,∠D=30,AB=BC.(1)求∠A+∠C的度數(shù);(2)連接BD,探究AD,BD,CD三者之間的數(shù)量關(guān)系,并說明理由;(3)若AB=1,點(diǎn)E在四邊形ABCD內(nèi)部運(yùn)動(dòng),且滿足AE2=BE2+CE2,求點(diǎn)E運(yùn)動(dòng)路徑的長(zhǎng)度.,1,2,3,4,5,6,7,8,9,10,11,解:(1)在四邊形ABCD中,∠B=60,∠D=30,∴∠A+∠C=360-∠B-∠D=360-60-30=270.(2)如圖1,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60,得到△BAQ,連接DQ,∵BD=BQ,∠DBQ=60,∴△BDQ是等邊三角形,∴BD=DQ,∵∠BAD+∠C=270,∴∠BAD+∠BAQ=270,∴∠DAQ=360-270=90,∴△DAQ是直角三角形,∴AD2+AQ2=DQ2,即AD2+CD2=BD2.,1,2,3,4,5,6,7,8,9,10,11,(3)如圖2,將△BCE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60到△BAF,連接EF,∵BE=BF,∠EBF=60,∴△BEF是等邊三角形,∴EF=BE,∠BFE=60,∵AE2=BE2+CE2,∴AE2=EF2+AF2,∴∠AFE=90,∴∠BFA=∠BFE+∠AFE=60+90=150,∴∠BEC=150,∴動(dòng)點(diǎn)E在四邊形ABCD內(nèi)部運(yùn)動(dòng),滿足∠BEC=150,以BC為邊向下作等邊△OBC,,1,2,3,4,5,6,7,8,9,10,11,10.如圖,已知二次函數(shù)y=ax2+bx+4的圖象經(jīng)過x軸上的兩點(diǎn)A(4,0),B(-2,0),與y軸交于C點(diǎn).(1)直接寫出C點(diǎn)的坐標(biāo).(2)求此二次函數(shù)的表達(dá)式.(3)連接AC,BC,P是線段AB上的一個(gè)動(dòng)點(diǎn)(P不與A,B重合),過點(diǎn)P作PD∥AC,交BC于點(diǎn)D,連接CP.當(dāng)P在什么位置時(shí),△PCD的面積取最大值?求出這個(gè)最大值.,1,2,3,4,5,6,7,8,9,10,11,1,2,3,4,5,6,7,8,9,10,11,11.已知P為正方形ABCD內(nèi)一點(diǎn).(1)如圖1,點(diǎn)E在AD邊上,若PA=PC=PE,延長(zhǎng)EP與AB的延長(zhǎng)線交于點(diǎn)F.①求證:PE=PF;②求∠EPC的度數(shù);(2)如圖2,若PB=1,PC=2,PD=3,求∠BPC的度數(shù).,1,2,3,4,5,6,7,8,9,10,11,解:(1)①過點(diǎn)P作PM⊥AE于點(diǎn)M,∵PA=PE,∴AM=ME,∵PM∥AB,∴PE=PF.②連接BP并延長(zhǎng),∵PA=PC,易得△ABP≌△CBP,∴∠ABP=∠CBP=45,∴BP的延長(zhǎng)線一定經(jīng)過D點(diǎn),∴∠BAP=∠BCP,∠DPC=∠DPA,∵PM⊥AE,PA=PE,∴PM平分∠APE,∴∠EPM=∠APM=∠BAP,∴∠EPC=∠DPC+∠DPE=2∠DPC-2∠APM=2(45+∠BCP)-2∠BAP=90.(2)如圖2,過點(diǎn)C作CQ⊥CP,并截取CQ=CP,連接PQ,BQ,易得△PCQ為等腰直角三角形,∴∠CPQ=45,PQ=,易證△DCP≌△BCQ,∴BQ=PD=3,∵PB=1,∴PB2+PQ2=BQ2,∴∠BPQ=90,即∠BPC=90+45=135.,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 安徽省2019年中考數(shù)學(xué)一輪復(fù)習(xí) 第二部分 熱點(diǎn)專題突破 專題6 在圖形運(yùn)動(dòng)中探究課件 安徽省 2019 年中 數(shù)學(xué) 一輪 復(fù)習(xí) 第二 部分 熱點(diǎn) 專題 突破 圖形 運(yùn)動(dòng) 探究 課件
鏈接地址:http://m.appdesigncorp.com/p-3233615.html