2019年高考數(shù)學(xué)二輪復(fù)習(xí) 專題訓(xùn)練四 第1講 等差數(shù)列和等比數(shù)列 理.doc
《2019年高考數(shù)學(xué)二輪復(fù)習(xí) 專題訓(xùn)練四 第1講 等差數(shù)列和等比數(shù)列 理.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué)二輪復(fù)習(xí) 專題訓(xùn)練四 第1講 等差數(shù)列和等比數(shù)列 理.doc(13頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019年高考數(shù)學(xué)二輪復(fù)習(xí) 專題訓(xùn)練四 第1講 等差數(shù)列和等比數(shù)列 理考情解讀1.等差、等比數(shù)列基本量和性質(zhì)的考查是高考熱點(diǎn),經(jīng)常以小題形式出現(xiàn).2.數(shù)列求和及數(shù)列與函數(shù)、不等式的綜合問題是高考考查的重點(diǎn),考查分析問題、解決問題的綜合能力1an與Sn的關(guān)系Sna1a2an,an2等差數(shù)列和等比數(shù)列等差數(shù)列等比數(shù)列定義anan1常數(shù)(n2)常數(shù)(n2)通項(xiàng)公式ana1(n1)dana1qn1(q0)判定方法(1)定義法(2)中項(xiàng)公式法:2an1anan2(n1)an為等差數(shù)列(3)通項(xiàng)公式法:anpnq(p、q為常數(shù))an為等差數(shù)列(4)前n項(xiàng)和公式法:SnAn2Bn(A、B為常數(shù))an為等差數(shù)列(5)an為等比數(shù)列,an0logaan為等差數(shù)列(1)定義法(2)中項(xiàng)公式法:aanan2(n1)(an0) an為等比數(shù)列(3)通項(xiàng)公式法:ancqn(c、q均是不為0的常數(shù),nN*)an為等比數(shù)列(4)an為等差數(shù)列aan為等比數(shù)列(a0且a1)性質(zhì)(1)若m、n、p、qN*,且mnpq,則amanapaq(2)anam(nm)d(3)Sm,S2mSm,S3mS2m,仍成等差數(shù)列(1)若m、n、p、qN*,且mnpq,則amanapaq(2)anamqnm(3)等比數(shù)列依次每n項(xiàng)和(Sn0)仍成等比數(shù)列前n項(xiàng)和Snna1d(1)q1,Sn(2)q1,Snna1熱點(diǎn)一等差數(shù)列例1(1)等差數(shù)列an的前n項(xiàng)和為Sn,若a2a4a612,則S7的值是()A21 B24 C28 D7(2)設(shè)等差數(shù)列an的前n項(xiàng)和為Sn,若1a31,0a63,則S9的取值范圍是_思維啟迪(1)利用a1a72a4建立S7和已知條件的聯(lián)系;(2)將a3,a6的范圍整體代入答案(1)C(2)(3,21)解析(1)由題意可知,a2a62a4,則3a412,a44,所以S77a428.(2)S99a136d3(a12d)6(a15d)又1a31,0a63,33(a12d)3,06(a15d)18,故3S921.思維升華(1)等差數(shù)列問題的基本思想是求解a1和d,可利用方程思想;(2)等差數(shù)列的性質(zhì)若m,n,p,qN*,且mnpq,則amanapaq;Sm,S2mSm,S3mS2m,仍成等差數(shù)列;aman(mn)dd(m,nN*);(A2n1,B2n1分別為an,bn的前2n1項(xiàng)的和)(3)等差數(shù)列前n項(xiàng)和的問題可以利用函數(shù)的性質(zhì)或者轉(zhuǎn)化為等差數(shù)列的項(xiàng),利用性質(zhì)解決(1)已知等差數(shù)列an,滿足a31,a86,則此數(shù)列的前10項(xiàng)的和S10_.(2)在等差數(shù)列an中,a50且a6|a5|,Sn是數(shù)列的前n項(xiàng)的和,則下列說法正確的是()AS1,S2,S3均小于0,S4,S5,S6均大于0BS1,S2,S5均小于0,S6,S7,均大于0CS1,S2,S9均小于0,S10,S11均大于0DS1,S2,S11均小于0,S12,S13均大于0答案(1)35(2)C解析(1)因?yàn)閍1a10a3a87,所以S1035.(2)由題意可知a6a50,故S100,而S99a50,故選C.熱點(diǎn)二等比數(shù)列例2(1)(xx安徽)數(shù)列an是等差數(shù)列,若a11,a33,a55構(gòu)成公比為q的等比數(shù)列,則q_.(2)已知等比數(shù)列an的前n項(xiàng)和為Sn,且a1a3,a2a4,則等于()A4n1 B4n1C2n1 D2n1思維啟迪(1)列方程求出d,代入q即可;(2)求出a1,q,代入化簡(jiǎn)答案(1)1(2)D解析(1)設(shè)等差數(shù)列的公差為d,則a3a12d,a5a14d,(a12d3)2(a11)(a14d5),解得d1,q1.(2)由可得2,q,代入得a12,an2()n1,Sn4(1),2n1,故選D.思維升華(1)an為等比數(shù)列,其性質(zhì)如下:若m、n、r、sN*,且mnrs,則amanaras;anamqnm;Sn,S2nSn,S3nS2n成等比數(shù)列(q1)(2)等比數(shù)列前n項(xiàng)和公式Sn能“知三求二”;注意討論公比q是否為1;a10.(1)已知各項(xiàng)不為0的等差數(shù)列an滿足a42a3a80,數(shù)列bn是等比數(shù)列,且b7a7,則b2b8b11等于()A1 B2C4 D8(2)在等比數(shù)列an中,a1an34,a2an164,且前n項(xiàng)和Sn62,則項(xiàng)數(shù)n等于()A4 B5C6 D7答案(1)D(2)B解析(1)a42a3a80,2aa43a8,即2a4a7,a72,b72,又b2b8b11b1qb1q7b1q10bq18(b7)38,故選D.(2)設(shè)等比數(shù)列an的公比為q,由a2an1a1an64,又a1an34,解得a12,an32或a132,an2.當(dāng)a12,an32時(shí),Sn62,解得q2.又ana1qn1,所以22n12n32,解得n5.同理,當(dāng)a132,an2時(shí),由Sn62,解得q.由ana1qn132()n12,得()n1()4,即n14,n5.綜上,項(xiàng)數(shù)n等于5,故選B.熱點(diǎn)三等差數(shù)列、等比數(shù)列的綜合應(yīng)用例3已知等差數(shù)列an的公差為1,且a2a7a126.(1)求數(shù)列an的通項(xiàng)公式an與前n項(xiàng)和Sn;(2)將數(shù)列an的前4項(xiàng)抽去其中一項(xiàng)后,剩下三項(xiàng)按原來順序恰為等比數(shù)列bn的前3項(xiàng),記bn的前n項(xiàng)和為Tn,若存在mN*,使對(duì)任意nN*,總有SnTm恒成立,求實(shí)數(shù)的取值范圍思維啟迪(1)利用方程思想求出a1,代入公式求出an和Sn;(2)將恒成立問題通過分離法轉(zhuǎn)化為最值解(1)由a2a7a126得a72,a14,an5n,從而Sn.(2)由題意知b14,b22,b31,設(shè)等比數(shù)列bn的公比為q,則q,Tm81()m,()m隨m增加而遞減,Tm為遞增數(shù)列,得4Tm8.又Sn(n29n)(n)2,故(Sn)maxS4S510,若存在mN*,使對(duì)任意nN*總有SnTm,則106.即實(shí)數(shù)的取值范圍為(6,)思維升華等差(比)數(shù)列的綜合問題的常見類型及解法(1)等差數(shù)列與等比數(shù)列交匯的問題,常用“基本量法”求解,但有時(shí)靈活地運(yùn)用性質(zhì),可使運(yùn)算簡(jiǎn)便(2)等差數(shù)列、等比數(shù)列與函數(shù)、方程、不等式等的交匯問題,求解時(shí)用等差(比)數(shù)列的相關(guān)知識(shí),將問題轉(zhuǎn)化為相應(yīng)的函數(shù)、方程、不等式等問題求解即可已知數(shù)列an前n項(xiàng)和為Sn,首項(xiàng)為a1,且,an,Sn成等差數(shù)列(1)求數(shù)列an的通項(xiàng)公式;(2)數(shù)列bn滿足bn(log2a2n1)(log2a2n3),求證:.(1)解,an,Sn成等差數(shù)列,2anSn,當(dāng)n1時(shí),2a1S1,a1,當(dāng)n2時(shí),Sn2an,Sn12an1,兩式相減得anSnSn12an2an1,2,數(shù)列an是首項(xiàng)為,公比為2的等比數(shù)列,an2n12n2.(2)證明bn(log2a2n1)(log2a2n3)log222n12log222n32(2n1)(2n1),(),(1)()()(1)(nN*)即0an為遞增數(shù)列,Sn有最小值d0,a7a100,a80.a7a10a8a90,a9a80,則a2 0130,則a2 0140,則a2 0130D若a40,則a2 0140答案C解析因?yàn)閍3a1q2,a2 013a1q2 012,而q2與q2 012均為正數(shù),若a30,則a10,所以a2 0130,故選C.2已知數(shù)列an是首項(xiàng)為a,公差為1的等差數(shù)列,bn.若對(duì)任意的nN*,都有bnb8成立,則實(shí)數(shù)a的取值范圍為_答案(8,7)解析ana(n1)1na1,所以bn,因?yàn)閷?duì)任意的nN*,都有bnb8成立,即(nN*)恒成立,即0(nN*),則有解得8a0,an1an2.當(dāng)n2時(shí),an是公差d2的等差數(shù)列a2,a5,a14構(gòu)成等比數(shù)列,aa2a14,(a26)2a2(a224),解得a23,由條件可知,4a1a54,a11,a2a1312,an是首項(xiàng)a11,公差d2的等差數(shù)列等差數(shù)列an的通項(xiàng)公式為an2n1.等比數(shù)列bn的公比q3,等比數(shù)列bn的通項(xiàng)公式為bn3n.(2)Tn,()k3n6對(duì)任意的nN*恒成立,k對(duì)任意的nN*恒成立,令cn,cncn1,當(dāng)n3時(shí),cncn1;當(dāng)n4時(shí),cn0,上式不成立;當(dāng)n為奇數(shù)時(shí),(2)n2n2 012,即2n2 012,得n11.綜上,存在符合條件的正整數(shù)n,且所有這樣的n的集合為n|n2k1,kN,k5- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學(xué)二輪復(fù)習(xí) 專題訓(xùn)練四 第1講 等差數(shù)列和等比數(shù)列 2019 年高 數(shù)學(xué) 二輪 復(fù)習(xí) 專題 訓(xùn)練 等差數(shù)列 等比數(shù)列
鏈接地址:http://m.appdesigncorp.com/p-3223406.html