《(浙江專用)2020版高考數(shù)學(xué)新增分大一輪復(fù)習 第九章 平面解析幾何 9.5 橢圓(第2課時)直線與橢圓課件.ppt》由會員分享,可在線閱讀,更多相關(guān)《(浙江專用)2020版高考數(shù)學(xué)新增分大一輪復(fù)習 第九章 平面解析幾何 9.5 橢圓(第2課時)直線與橢圓課件.ppt(66頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第2課時直線與橢圓,,第九章9.5橢圓,,NEIRONGSUOYIN,內(nèi)容索引,題型分類深度剖析,課時作業(yè),題型分類深度剖析,1,PARTONE,1.若直線y=kx+1與橢圓總有公共點,則m的取值范圍是A.m>1B.m>0C.0
0,即時,方程③有兩個不同的實數(shù)根,可知原方程組有兩組不同的實數(shù)解.這時直線l與橢圓C有兩個不重合的公共點.,2.已知直線l:y=2x+m,橢圓C:試問當m取何值時,直線l與橢圓C:(1)有兩個不重合的公共點;,解將直線l的方程與橢圓C的方程聯(lián)立,,(2)有且只有一個公共點;,解當Δ=0,即m=時,方程③有兩個相同的實數(shù)根,可知原方程組有兩組相同的實數(shù)解.這時直線l與橢圓C有兩個互相重合的公共點,即直線l與橢圓C有且只有一個公共點.,(3)沒有公共點.,解當Δ0.,一般地,在橢圓與向量等知識的綜合問題中,平面向量只起“背景”或“結(jié)論”的作用,幾乎都不會在向量的知識上設(shè)置障礙,所考查的核心內(nèi)容仍然是解析幾何的基本方法和基本思想.,(1)求橢圓C的方程;,解設(shè)A(x1,y1),B(x2,y2),P(x0,y0),,消去y,可得(3+4k2)x2+8kmx+4m2-12=0,,又點P在橢圓C上,,課時作業(yè),2,PARTTWO,1.若直線mx+ny=4與⊙O:x2+y2=4沒有交點,則過點P(m,n)的直線與橢圓=1的交點個數(shù)是A.至多為1B.2C.1D.0,,基礎(chǔ)保分練,√,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,√,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析由題意知橢圓的右焦點F的坐標為(1,0),則直線AB的方程為y=2x-2.,√,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析設(shè)弦的端點A(x1,y1),B(x2,y2),,√,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,4.已知F1(-1,0),F(xiàn)2(1,0)是橢圓C的兩個焦點,過F2且垂直于x軸的直線與橢圓C交于A,B兩點,且|AB|=3,則C的方程為,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,則c=1.因為過F2且垂直于x軸的直線與橢圓交于A,B兩點,且|AB|=3,,√,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析依題意,當直線l經(jīng)過橢圓的右焦點(1,0)時,其方程為y-0=tan45(x-1),即y=x-1.,A.4B.3C.2D.1,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,∴PF1⊥PF2,∠F1PF2=90.設(shè)|PF1|=m,|PF2|=n,則m+n=4,m2+n2=12,2mn=4,mn=2,,,√,7.直線y=kx+k+1與橢圓=1的位置關(guān)系是______.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析由于直線y=kx+k+1=k(x+1)+1過定點(-1,1),而(-1,1)在橢圓內(nèi),故直線與橢圓必相交.,相交,8.(2018浙江余姚中學(xué)質(zhì)檢)若橢圓C:=1的弦被點P(2,1)平分,則這條弦所在的直線l的方程是______________,若點M是直線l上一點,則M到橢圓C的兩個焦點的距離之和的最小值為________.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,x+2y-4=0,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析當直線l的斜率不存在時不滿足題意,,9.已知橢圓C:=1(a>b>0)的左焦點為F,橢圓C與過原點的直線相交于A,B兩點,連接AF,BF,若|AB|=10,|AF|=6,cos∠ABF=則橢圓C的離心率e=_____.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析設(shè)橢圓的右焦點為F1,在△ABF中,由余弦定理可解得|BF|=8,所以△ABF為直角三角形,且∠AFB=90,又因為斜邊AB的中點為O,所以|OF|=c=5,連接AF1,因為A,B關(guān)于原點對稱,所以|BF|=|AF1|=8,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,(1)求橢圓E的方程;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,解由題意知,直線AB的斜率存在且不為0,故可設(shè)直線AB的方程為x=my-1,設(shè)A(x1,y1),B(x2,y2).,因為F1(-1,0),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,(1)求橢圓的標準方程;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,解設(shè)橢圓C的焦距為2c,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,(2)過點P(6,0)的直線l交橢圓于A,B兩點,Q是x軸上的點,若△ABQ是以AB為斜邊的等腰直角三角形,求l的方程.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,解設(shè)AB的中點坐標為(x0,y0),A(x1,y1),B(x2,y2),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,所以直線l的方程為x3y-6=0.,技能提升練,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,√,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析方法一∵|OA|=|OF2|=2|OM|,M在橢圓C的短軸上,設(shè)橢圓C的左焦點為F1,連接AF1,,又|AF1|2+|AF2|2=(2c)2,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,方法二∵|OA|=|OF2|=2|OM|,M在橢圓C的短軸上,,設(shè)橢圓C的左焦點為F1,連接AF1,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,14.已知橢圓=1(a>b>0)短軸的端點為P(0,b),Q(0,-b),長軸的一個端點為M,AB為經(jīng)過橢圓中心且不在坐標軸上的一條弦,若PA,PB的斜率之積等于則點P到直線QM的距離為________.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析設(shè)A(x0,y0),則B點坐標為(-x0,-y0),,則直線QM的方程為bx-ay-ab=0,,拓展沖刺練,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,√,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析設(shè)AB的中點為G,則由橢圓的對稱性知,O為平行四邊形ABCD的對角線的交點,則GO∥AD.設(shè)A(x1,y1),B(x2,y2),,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解設(shè)M(x0,y0),P(x1,y1),Q(x2,y2),由題意知PQ的斜率存在,且不為0,所以x0y0≠0,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
鏈接地址:http://m.appdesigncorp.com/p-3198704.html