散熱器型材分流組合模的設(shè)計
散熱器型材分流組合模的設(shè)計,散熱器,分流,組合,設(shè)計
機電學(xué)院畢業(yè)論文排版格式1A4紙雙面打印,頁邊距采用默認(rèn)設(shè)置,上下邊距2.54厘米,左右邊距3.17厘米。正文行間距設(shè)置為固定值20,段前、段后為0。1、2、3級標(biāo)題的段前、段后都設(shè)置為0.5行。2頁碼分奇偶頁,不設(shè)頁眉、頁腳。頁碼從正文(引言)開始編號。3正文全文(包括目錄)用小4號仿宋字體,英文和數(shù)字用Times New Roman字體。正文中不要空行和空格。正文全文一般為820頁(不包括附錄),過多的內(nèi)容需要刪節(jié)。41、2、3級標(biāo)題序號分別用1、1.1、1.1.1,1級標(biāo)題為4號字,2、3級標(biāo)題為小4號字。全部頂格加粗。序號和標(biāo)題之間統(tǒng)一空1格,下面的小標(biāo)題依次采用(1)、1)、,全部縮進2個字,不用字母或其他序號。序號和標(biāo)題后不加任何標(biāo)點。5目錄、中文摘要和關(guān)鍵詞、英文摘要和關(guān)鍵詞各占1頁,目錄要求自動生成,列到3級標(biāo)題,1、2、3級標(biāo)題之間依次縮進2格。6圖、表、公式一般都居中排,圖號、表號和公式序號都從1開始編號,不按小節(jié)編號。圖號、表號與圖題、表題之間空1格,全部用5號字,居中。圖、表中的文字全部用小5號字,其他軟件畫的圖文字大小不能超過正文。公式編號靠右邊排列。7圖、表移、公式到下頁時,后面的文字提前,不要空行。8中文關(guān)鍵詞用分號隔開,英文關(guān)鍵詞用分號加1個空格隔開,每個單詞的首字母都大寫。9正文中按編號順序引用參考文獻至少5篇,編號可以不連續(xù),但必須從小到大以上標(biāo)的形式引用,編號用方括號括起來。10電路中要標(biāo)明器件的參數(shù)(電阻、電容、電感)或型號(其他器件)11英文摘要和關(guān)鍵詞用英文標(biāo)點,其他用中文標(biāo)點,如正文中的句號用“?!倍挥谩啊?。12各級標(biāo)題(包括參考文獻)后都不加標(biāo)點。13表格中不要兩邊的列線。14具體的參考文獻用5號字,每條參考文獻后都不要標(biāo)點,教材不要書名號。15致謝和參考文獻為1級標(biāo)題,不要序號。16注釋排在當(dāng)頁的下面,5號字。17致謝中不要出現(xiàn)指導(dǎo)老師的名字。18參考文獻居左,序號加方括號,空1格,參考文獻著錄內(nèi)容要求及示例如下。具體格式參考后面的模板。(1)專著著錄格式序號著者.書名.版本(第一版不寫).出版地:出版者,出版年例1孫家廣,楊長青.計算機圖形學(xué).北京:清華大學(xué)出版社,1995Sun Jiaguang, Yang Changqing. Computer graphics.Beijing: Tsinghua University Press,1995 (in Chinese)2Skolink M I. Radar handbook. New York: McGraw-Hill, 1990(2)期刊著錄格式序號作者.題名J.刊名,出版年份,卷號(期號):起止頁碼例3李旭東,宗光華,畢樹生,等.生物工程微操作機器人視覺系統(tǒng)的研究.北京航空航天大學(xué)學(xué)報,2002,28(3):249252Li Xudong, Zong Guanghua, Bi Shusheng, et al. Research on global vision system for bioengineering-oriented micromanipulation robot systemJ. Journal of Beijing University of Aeronautics and Astronautics, 2002,28(3):249252(in Chinese)(3)論文集著錄格式序號作者.題名A.見(英文用In):主編.論文集名C.出版地:出版者,出版年.起止頁碼例4張佐光,張曉宏,仲偉虹,等.多相混雜纖維復(fù)合材料拉伸行為分析見:張為民編.第九屆全國復(fù)合材料學(xué)術(shù)會議論文集(下冊)北京:世界圖書出版公司,1996.4104165Odoni A R. The flow management problem in air traffic control. In: Odoni A R, Szego G,eds. Flow Control of Congested Networks. Berlin: Springer-Verlag,1987.269298(4)學(xué)位論文著錄格式序號作者.題名D.保存地點:保存單位,年例6金 宏.導(dǎo)航系統(tǒng)的精度及容錯性能的研究.北京:北京航空航天大學(xué)自動控制系,1998(5)科技報告著錄格式序號作者.題名.報告題名及編號,出版年例7Kyungmoon Nho. Automatic landing system design using fuzzy logicR.AIAA-98-4484,1998(6)國際或國家標(biāo)準(zhǔn)著錄格式序號標(biāo)準(zhǔn)編號,標(biāo)準(zhǔn)名稱S例8GB/T 161591996,漢語拼音正詞法基本規(guī)則S(7)專利著錄格式序號專利所有者.專利題名.專利國別:專利號,出版日期例9姜錫洲.一種溫?zé)嵬夥笏幹苽浞桨钢袊鴮@?81056073,1989-07-06(8)電子文獻(網(wǎng)絡(luò)文獻)著錄格式序號作者.題名電子文獻/載體類型標(biāo)識.電子文獻的出處或可獲得地址,發(fā)表或更新日期/引用日期例10王明亮.關(guān)于中國學(xué)術(shù)期刊標(biāo)準(zhǔn)化數(shù)據(jù)系統(tǒng)工程的進展EB/OLhttp:/www.cajcd.edu.cn/pub/wm1.txt/980810-2.html,1998-08-16/1998-10-04河南科技學(xué)院2007屆本科畢業(yè)論文(設(shè)計)論文題目:學(xué)生姓名: 所在院系: 機電學(xué)院所學(xué)專業(yè): 導(dǎo)師姓名: 完成時間:200 年 月 日摘 要仿宋 4號字加粗 中間空2格 居中小4號仿宋 首行縮進2字 兩端對齊,單獨占1頁空1行可編程控制器(PLC)被研制成大約在1968年。PLC是一種固態(tài)電子裝置,它利用已存入的程序來控制機器的運行或工藝的工序。PLC 通過輸入/輸出(I/O)裝置發(fā)出控制信號和接受輸入信號。(200字左右)關(guān)鍵詞:PLC,編程語言,溫度檢測小4號加粗3-5個關(guān)鍵詞,小4號,逗號隔開The Exploration of the Remote Controller Based on the Telephone Network(英文題目)Abstract小4號Times New Roman字體,首行縮進2個字,用英文標(biāo)點,兩端對齊空1行Times New Roman字體,4號字加粗居中,單獨占1頁The programmable logic controller (PLC) was developed in 1968. PLC is a solid-state device used to control machine motion or process operation by means of a stored program. The PLC sends output control signals and receives input signals through input/out (I/O) devices. PLC design is for serious industrial environmental use.Keywords:PLC, Programming Language, Temperature DetectionTimes New Roman字體,小4號字,逗號加1個空格隔開,每詞首字母大寫Times New Roman字體,小4號字加粗目 錄仿宋,4號字加粗,中間空2格,居中空1行縮進2個字符,序號后空1格1 緒論12 設(shè)計要求13 系的結(jié)構(gòu)23.1 PLC類型的選擇23.2 溫度傳感器2縮進2個字符3.2.1 溫度傳感器的類型23.2.2 類型的選擇23.2.3 工作原理33.2.4主要技術(shù)指標(biāo)33.3 A/D模塊及其溫度控制編程33.3.1 A/D模塊的介紹33.3.2數(shù)據(jù)轉(zhuǎn)換33.3.3軟件編程的思路43.4 顯示電路43.4.1 PS7219簡介43.4.2 PS7219的主要特點43.4.3 通訊時序圖53.4.4 PS7219數(shù)字與控制寄存器54 軟件編程65 報警電路66 程序的結(jié)構(gòu)框圖77 結(jié)束語7致謝7參考文獻7附錄1 電路總圖頁碼目錄全部為小4號字附錄2 程序清單頁碼首行縮進2個漢字,建議不要用空格正文中段前、段后設(shè)置為01級標(biāo)題,序號和標(biāo)題之間空1格,4號字仿宋加粗,頂格,段前、段后設(shè)置為0.5行1 緒論在生產(chǎn)過程,科學(xué)研究和其他產(chǎn)業(yè)領(lǐng)域中,電氣控制技術(shù)應(yīng)用十分廣泛。在機械設(shè)備的控制中,電氣控制也比其他的控制方法使用的更為普遍。本系統(tǒng)的控制是采用PLC的編程語言梯形語言,梯形語言是在可編程控制器中的應(yīng)用最廣的語言,因為它在繼電器的基礎(chǔ)上加進了許多功能、使用靈活的指令,使邏輯關(guān)系清晰直觀,編程容易,可讀性強,所實現(xiàn)的功能也大大超過傳統(tǒng)的繼電器控制電路。2 設(shè)計要求序號首行縮進2個漢字,回行頂格系統(tǒng)的具體設(shè)計要求為:(1)PLC系統(tǒng)能夠監(jiān)控反應(yīng)器的溫度。(2)開始工作時全速加熱,到設(shè)定值時保溫40分鐘停止加熱。(3)通過串行方式在LED上顯示3位溫度值。中文括號( ),不用英文括號( )(4)保溫過程中溫度過高/低時能發(fā)出聲光報警,聲報警能用按鈕手動解除,光報警在正常時自動解除。(5)通過通信方式傳送給監(jiān)控電腦,監(jiān)控電腦能檢測對象的參數(shù)、狀態(tài)。文獻至少引用5篇基于以上的要求,所設(shè)計的系統(tǒng)必須有以下結(jié)構(gòu)模塊:溫度傳感器單元、參數(shù)的LED串行顯示單元、PLC模擬量轉(zhuǎn)換單元、電腦監(jiān)測單元2 。3 系統(tǒng)結(jié)構(gòu)溫度監(jiān)控系統(tǒng)是將溫度通過溫度傳感器傳送到A/D模塊,A/D模塊將溫度轉(zhuǎn)換為數(shù)字量,再傳送到PLC。PLC與外部設(shè)備的連接主要是通過I/O口,其功能是接收輸入信號,傳出輸出信號。整個系統(tǒng)包括PLC、A/D模塊、顯示電路。系統(tǒng)原理框圖如圖1所示。圖居中5號字居中溫度傳感器加熱單元顯示電路FP0A21電腦 空1格5號字居中,不加粗 圖1 系統(tǒng)原理框圖用半角的點“3.2”,不用全角的點“32”2、3級標(biāo)題,序號和標(biāo)題之間空1格,小4號字仿宋加粗,頂格,段前、段后設(shè)置為0.5行3.2 溫度傳感器3.2.1 溫度傳感器的類型溫度傳感器有熱電偶和熱電阻兩種類型,熱電阻的溫度特性為:(1)編號居右公式居中3.2.2 類型的選擇表居中5號居中表題居中空1格在選擇溫度傳感器時根據(jù)不同的場合選擇類型,本設(shè)計由于需要選用PT100溫度傳感器,鉑熱電阻PT100是國際溫標(biāo)ITS-90標(biāo)準(zhǔn)中的工業(yè)溫度測量元件之一,所以利用PT100溫度傳感器具有一定的典型性,有利于系統(tǒng)的穩(wěn)定。 表1 串行數(shù)據(jù)D15 D14 D13 D12D11 D10 D9 D8D7 D6 D5 D4 D3 D2 D1 D0無關(guān)位地址數(shù)據(jù)不要兩邊列線3.2.2.1 PS7219數(shù)字與控制寄存器4級標(biāo)題(盡量避免用),序號和標(biāo)題之間空1格,小4號字仿宋,頂格,段前、段后設(shè)置為0.5行PS7219內(nèi)部共有統(tǒng)一編址的8位寄存器15個,分8個數(shù)字寄存器和7個控制寄存器,它們均可單獨直接尋址,這樣就可對單個數(shù)據(jù)或控制字進行更新。3.2.2.2 數(shù)字寄存器地址0108,對應(yīng)LED1LED8不譯碼時,D6D0分別對應(yīng)標(biāo)準(zhǔn)7段顯示器的AG,正邏輯顯示譯碼時,D3D0為顯示數(shù)據(jù)的BCD碼無論譯碼與否,D7為1,則該位小數(shù)點顯示7 結(jié)束語本設(shè)計既充分利用PLC的特點,又對PLC的控制功能進行擴充,使其具有顯示直觀,運行可靠。序號用中文方括號,不空格,5號字仿宋,頂格不要序號致謝期刊標(biāo)識年,卷(期):起止頁碼本文是在指導(dǎo)老師的悉心指導(dǎo)下完成的。指導(dǎo)老師具有嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度,豐富的實踐經(jīng)驗,在治學(xué)及做人方面使我受益匪淺。衷心感謝老師對我的關(guān)心指導(dǎo)和幫助。參考文獻分隔符用的點為仿宋,不加空格1凌云.PS7219顯示驅(qū)動器及其在PLC中的應(yīng)用J.湖南冶金職業(yè)技術(shù)學(xué)院報,2002,28(3):249252著作、教材標(biāo)識2張桂香.電氣控制與PLC應(yīng)用M.化學(xué)工業(yè)出版社,2003學(xué)位論文標(biāo)識3金宏.導(dǎo)航系統(tǒng)的精度及容錯性能的研究D.北京:北京航空航天大學(xué)自動控制系,1998電子文獻標(biāo)識4王明亮.關(guān)于中國學(xué)術(shù)期刊標(biāo)準(zhǔn)化數(shù)據(jù)系統(tǒng)工程的進展EB/OL.http:/www.cajcd.edu.cn/pub/wm1.txt/980810-2.html,1998-08-16/1998-10-043個以上作者用等5李旭東,宗光華,畢樹生等.生物工程微操作機器人視覺系統(tǒng)的研究J.北京航空航天大學(xué)學(xué)報,2002(3)年(期)學(xué)生姓名趙周鵬班級機教043指導(dǎo)教師陳錫渠 楊輝論文(設(shè)計)題目散熱器型材分流組合模的設(shè)計目前已完成任務(wù)1.查詢了散熱器的部分相關(guān)資料。2.查詢了模具設(shè)計的部分相關(guān)資料。3.熟悉了平面分流組合模的整體結(jié)構(gòu)和工作原理。4.繪制了模具的總裝配圖和部分零件圖(CAD草圖)。是否符合任務(wù)書要求進度:符合尚需完成的任務(wù)1.在草圖基礎(chǔ)上進行修改優(yōu)化,形成正式的設(shè)計圖紙。2.分析設(shè)計中的模具的可用性,完成模具設(shè)計的說明。3.進行設(shè)計論文的系統(tǒng)撰寫。能否按期完成論文(設(shè)計):能按期完成存在問題和解決辦法存在問題1.在草圖設(shè)計中一些模具的關(guān)鍵尺寸的計算。2.設(shè)計圖紙完成后,能否進行實際的加工,更加適于工業(yè)現(xiàn)場的使用。擬采取的辦法1.結(jié)合前有的相關(guān)資料,按1:1的比例進行測繪。2.去工廠實際加工生產(chǎn),從生產(chǎn)的產(chǎn)品中尋找模具的不足之處。指導(dǎo)教師簽 字日期 年 月 日教學(xué)院長(系主任)意 見 簽字: 年 月 日河南科技學(xué)院本科畢業(yè)論文(設(shè)計)中期進展情況檢查表河南科技學(xué)院本科生畢業(yè)論文(設(shè)計)任務(wù)書題目名稱:散熱器型材分流組合模的設(shè)計學(xué)生姓名趙周鵬所學(xué)專業(yè)機電技術(shù)教育學(xué)號20040315028指導(dǎo)教師姓名陳錫渠 楊輝所學(xué)專業(yè)機械設(shè)計制造及其自動化職稱副教授 助教完成期限 2008年12月22日 至 2009年5月31日一、論文(設(shè)計)主要內(nèi)容及主要技術(shù)指標(biāo)1.主要內(nèi)容(1)平面分流組合模的基本結(jié)構(gòu);(2)分析分流組合模的各個要素;(3)分析各個要素對擠壓產(chǎn)品的影響;(4)對所給圖紙的鋁型材模具進行設(shè)計;(5)對加工結(jié)果進行分析并得出結(jié)論; 2.技術(shù)指標(biāo)(1)根據(jù)所給圖紙斷面,分析平面分流組合模的各個要素,對該型材對應(yīng)的模具進行設(shè)計;(2)分析模具擠壓產(chǎn)品的缺陷;(3)擠壓機噸位;二、畢業(yè)論文(設(shè)計)的基本要求1.畢業(yè)論文(設(shè)計)一份:有400字左右的中英文摘要,正文后有15篇左右的參考文獻,正文中要引用5篇以上文獻,并注明文獻出處。2.不少于2000漢字的與本課題有關(guān)的外文翻譯資料;3.畢業(yè)設(shè)計總數(shù)在10000字以上;三、畢業(yè)論文(設(shè)計)進度安排1.2008年12月22日-2009年1月9日,下達畢業(yè)設(shè)計任務(wù)書;寒假期間完成英文資料翻譯和開題報告。2. 2009年2月16-3月6日(第1-3周),指導(dǎo)教師審核開題報告、設(shè)計方案和英文資料翻譯。3. 2009年4月7日-4月24日(第7-11周),畢業(yè)設(shè)計單元部分設(shè)計。4. 2009年4月26日-5月1日(第11周),畢業(yè)設(shè)計中期檢查、到輝龍鋁廠實地觀摩設(shè)計。5. 2009年5月4日-5月22日(第12-14周),整理、撰寫畢業(yè)設(shè)計報告。6. 2009年5月25日-5月31日(第15-16周)上交畢業(yè)設(shè)計報告,指導(dǎo)教師、評閱教師審查評閱設(shè)計報告,畢業(yè)設(shè)計答辯資格審查。畢業(yè)設(shè)計答辯,學(xué)生修改整理設(shè)計報告。河南科技學(xué)院2009屆本科畢業(yè)論文(設(shè)計)外 文 翻 譯學(xué)生姓名:趙周鵬 所在院系: 機電學(xué)院所學(xué)專業(yè): 機電技術(shù)教育導(dǎo)師姓名: 陳錫渠 楊輝完成時間:2009 年5 月31日Stress Analysis and Optimum Design of Hot Extrusion DiesAbstract: A three-dimensional model of a hot extrusion die was developed by using ANSYS software and its second development languageANSYS parametric design language. A finite element analysis and optimum design were carried out. The three-dimensional stress diagram shows that the stress concentration is rather severe in the bridge of the hot extrusion die, and that the stress distribution is very uneven. The optimum dimensions are obtained. The results show that the optimum height of the extrusion die is 89.596 mm.The optimum radii of diffluence holes are 65.048 mm and 80.065 mm. The stress concentration is reduced by 27%.Key words: three-dimensional method; modeling; hot extrusion die; optimum designIntroduction With the continuous improvement of living standards, better thermal conductivity of aluminum alloy profiles. Aluminum components widely used in every aspect of life. Therefore, the aluminum alloy extrusion profiles, profiles of various types of radiators have been widely used in electrical appliances, machinery, and other industries. Variable products and the growing diversity and complexity of high-precision, the extrusion process is the basis for extrusion die. It not only determines the shape, size, accuracy and surface state, but also affect the performance of the product. So extrusion die extrusion technology is the key. Studies to improve extrusion die quality and prolong its life span usually attempt to simplify 3-D finite element model to 2-D, but it is only right for simple structural shapes. Without a 3-D finite element analysis, the results cannot give practical manufacturing help and offer useful information3-5. In this paper, aluminium profile extrusion die was modeled to get in optimum design6-8.1 Solid Modeling Figure 1 shows the male die of a hot extrusion planar combined die. Its external diameter is 227.000 mm, its height is 80.000 mm. Other parameters are shown in Fig. 1. The modeling method is as follows.1.1 Coordinates of P1 and P5 The coordinates of the point of intersection between the beeline L (y = kx + b) and the circular arc (x2 + y2 =R2) are 1.2 Coordinates of P2 and P6 The coordinates of the intersection point (P2) between beeline L1 (y = kx+b) and beeline L2 (y =S1) are The coordinates of the intersection point (P6) between beeline L3 (y = kx+b) and beeline L4 (y =S1) are 1.3 Coordinates of P3, P4, P7, and P8 P3 and P1 are symmetric about the y-axis. P4 and P2 are also symmetric about the y-axis. P7 and P5 are symmetric about the x-axis. P8 and P6 are also symmetricabout the x-axis.1.4 Variables in the equations In Eqs. (1)-(6), for points P1 and P2, and R = R1. For points P5 and P6, and R = R2. R1, R2, T1, T2, S1, and S2 are the change rule along the height (H) of the die expressed as the functions R1=f1 (z), R2=f2 (z), T1=f3 (z), T2=f4 (z), S1=f5 (z), andS2=f6 (z), z 0, H.1.5 Section shape at some height With lines linking P1-P4, P5-P8, with circular arc filleting at the point of intersection (P1-P8), the section shape at some height is obtained.1.6 Section shape at every height H is divided to interfacial number (INUM) equal parts (INUM is decided by the precision, if the INUM is higher, the precision is better). The section shape is drawn at every height as shown in Fig. 2. 1.7 Smooth curved surface Using SKIN command in ANSYS, smooth curved surfaces were built along the lines. They are the surfaces of the influence hole. Using the VA (it generates a volume bounded by existing area) command, a solid was created from those surfaces.1.8 Symmetry of the die The main body and kernel of the die were drawn using the Boolean operations of add, subtract, etc. (Fig. 3).The symmetry of the die was used to accelerate the computations using a 1/4-solid model for the finite element analysis (Fig. 4).2 Computing Model A planar die that extrudes the aluminium alloy (6063Al-Mg-Si) was used as an example. The liquidoid of Al is 6579, and the melt temperature of Al+Mg2Si is 558. Taking the extrusion pressure and the products quality into account, the working temperature was determined to be 450. The die material is 4Cr5MoSiV1(H13). Below the 450, its Young modulus and Possion ratio are 210 GPa and 0.25, respectively. Its yield strength is 1200MPa.The friction coefficient is 0.3. The Solid92 3-D solid element was used to carry through the free mesh. In order to load the frictional force while extruding, the surface effect element Surf154 was used to produce the regular quadrangles (Fig. 5). For the 1600 t extruder, the extrusion intensity was computed using Eq. (7)10. The values are shown in Table 1. The bridge collapse often takes place in the die. And its strength is determined by the height and the distribution of the diffluence holes. In this paper, the height (H) and the radii (R1 and R2) of the diffluence holes were used as design variables and the maximum equivalent pressure (smax) was used as the goal function.The design variable ranges are listed in Table 2. 3 Computed Results Figure 6 is the equivalent stress diagram. From Fig. 6 we can see that the stress is largest at the bridge, as expected 24 maximum equivalent stress values are listed in Table 3 from large to small. The data shows that the nodal maximum equivalent stress is 1066.5 MPa, which is 14.5% higher than the second one (912.0 MPa), and that the stress convergence is very severe in the bridge, this part is apt to produce crack. The initial value of the design variables R1, R2, H, q1, and q2 were 75.000 mm, 88.000 mm, 80.000 mm, 30.000, and 30.000, respectively, and the maximum equivalent stress smax= 1066.5 MPa. In the 21 iterations, the optimum iteration was the eighteenth. The design variable values were R1=65.048 mm, R2=80.065 mm, H = 89.596 mm, q1=30.642, q2=20.045. The maximum equivalent stress smax= 723.1 MPa, which is 27% less. The optimum results are shown in Table 4.4 Conclusions 1) Based on ANSYS software, its second development language APDL was used to develop a 3-D model of the hot extrusion die that extrudes aluminium profile has been obtained. 2) The 3-D stress distribution was very uneven, with severe stress concentrations in the bridge of the hot extrusion die. The optimal geometric design had 27% lower maximum stress, A better die will not only reduce die number but also reduce time lost changing dies, which will greatly heighten productivity. 3)Die cantilever design of large-scale streaming into false structure Not only is effective to reduce the pressure on the mold to take greater positive die as a result of dangerous sections of the fracture. greatly extend the life of the die, but this can not bring streaming bridge structure also more effective to reduce the thickness of the bottom die velocity, the velocity Extruded ensure a balanced, stable. Meanwhile, the structural design of the extrusion die for the wide disparity in thickness solid Profile Die Design, opened up a new way of thinking and approach. References1 Karacs G. Computer aided methods for die design. Proceedings of the Conference on Mechanical Engineering, 1998, 2: 463-466.2Mueller G. Design optimization with the finite element program ANSYS. International Journal of Computer Applications in Technology, 1994, 7: 271-277.作者: 帥詞俊; 肖剛; 倪正順;英文作者: SHUAI Cijun *; XIAO Gang; NI Zhengshun College of Mechanical and Electronic Engineering; Central South University; Changsha; China;刊名:Tsinghua Science and Technology , 清華大學(xué)學(xué)報(英文版), 編輯部郵箱 2004年 03期查詢來源: 中國學(xué)術(shù)期刊全文數(shù)據(jù)庫查詢網(wǎng)址:http:/59.69.171.7/kns50/scdbsearch/scdetail.aspx?QueryID=14&CurRec=1 5 / 6河南科技學(xué)院2009屆本科畢業(yè)論文(設(shè)計)外 文 資 料學(xué)生姓名:趙周鵬 所在院系: 機電學(xué)院所學(xué)專業(yè): 機電技術(shù)教育導(dǎo)師姓名: 陳錫渠 楊輝完成時間:2009 年5 月31日Stress Analysis and Optimum Design of Hot Extrusion DiesAbstract: A three-dimensional model of a hot extrusion die was developed by using ANSYS software and its second development languageANSYS parametric design language. A finite element analysis and optimum design were carried out. The three-dimensional stress diagram shows that the stress concentration is rather severe in the bridge of the hot extrusion die, and that the stress distribution is very uneven. The optimum dimensions are obtained. The results show that the optimum height of the extrusion die is 89.596 mm.The optimum radii of diffluence holes are 65.048 mm and 80.065 mm. The stress concentration is reduced by 27%.Key words: three-dimensional method; modeling; hot extrusion die; optimum designIntroduction With the continuous improvement of living standards, better thermal conductivity of aluminum alloy profiles. Aluminum components widely used in every aspect of life. Therefore, the aluminum alloy extrusion profiles, profiles of various types of radiators have been widely used in electrical appliances, machinery, and other industries. Variable products and the growing diversity and complexity of high-precision, the extrusion process is the basis for extrusion die. It not only determines the shape, size, accuracy and surface state, but also affect the performance of the product. So extrusion die extrusion technology is the key. Studies to improve extrusion die quality and prolong its life span usually attempt to simplify 3-D finite element model to 2-D, but it is only right for simple structural shapes. Without a 3-D finite element analysis, the results cannot give practical manufacturing help and offer useful information3-5. In this paper, aluminium profile extrusion die was modeled to get in optimum design6-8.1 Solid Modeling Figure 1 shows the male die of a hot extrusion planar combined die. Its external diameter is 227.000 mm, its height is 80.000 mm. Other parameters are shown in Fig. 1. The modeling method is as follows.1.1 Coordinates of P1 and P5 The coordinates of the point of intersection between the beeline L (y = kx + b) and the circular arc (x2 + y2 =R2) are 1.2 Coordinates of P2 and P6 The coordinates of the intersection point (P2) between beeline L1 (y = kx+b) and beeline L2 (y =S1) are The coordinates of the intersection point (P6) between beeline L3 (y = kx+b) and beeline L4 (y =S1) are 1.3 Coordinates of P3, P4, P7, and P8 P3 and P1 are symmetric about the y-axis. P4 and P2 are also symmetric about the y-axis. P7 and P5 are symmetric about the x-axis. P8 and P6 are also symmetricabout the x-axis.1.4 Variables in the equations In Eqs. (1)-(6), for points P1 and P2, and R = R1. For points P5 and P6, and R = R2. R1, R2, T1, T2, S1, and S2 are the change rule along the height (H) of the die expressed as the functions R1=f1 (z), R2=f2 (z), T1=f3 (z), T2=f4 (z), S1=f5 (z), andS2=f6 (z), z 0, H.1.5 Section shape at some height With lines linking P1-P4, P5-P8, with circular arc filleting at the point of intersection (P1-P8), the section shape at some height is obtained.1.6 Section shape at every height H is divided to interfacial number (INUM) equal parts (INUM is decided by the precision, if the INUM is higher, the precision is better). The section shape is drawn at every height as shown in Fig. 2. 1.7 Smooth curved surface Using SKIN command in ANSYS, smooth curved surfaces were built along the lines. They are the surfaces of the influence hole. Using the VA (it generates a volume bounded by existing area) command, a solid was created from those surfaces.1.8 Symmetry of the die The main body and kernel of the die were drawn using the Boolean operations of add, subtract, etc. (Fig. 3).The symmetry of the die was used to accelerate the computations using a 1/4-solid model for the finite element analysis (Fig. 4).2 Computing Model A planar die that extrudes the aluminium alloy (6063Al-Mg-Si) was used as an example. The liquidoid of Al is 6579, and the melt temperature of Al+Mg2Si is 558. Taking the extrusion pressure and the products quality into account, the working temperature was determined to be 450. The die material is 4Cr5MoSiV1(H13). Below the 450, its Young modulus and Possion ratio are 210 GPa and 0.25, respectively. Its yield strength is 1200MPa.The friction coefficient is 0.3. The Solid92 3-D solid element was used to carry through the free mesh. In order to load the frictional force while extruding, the surface effect element Surf154 was used to produce the regular quadrangles (Fig. 5). For the 1600 t extruder, the extrusion intensity was computed using Eq. (7)10. The values are shown in Table 1. The bridge collapse often takes place in the die. And its strength is determined by the height and the distribution of the diffluence holes. In this paper, the height (H) and the radii (R1 and R2) of the diffluence holes were used as design variables and the maximum equivalent pressure (smax) was used as the goal function.The design variable ranges are listed in Table 2. 3 Computed Results Figure 6 is the equivalent stress diagram. From Fig. 6 we can see that the stress is largest at the bridge, as expected 24 maximum equivalent stress values are listed in Table 3 from large to small. The data shows that the nodal maximum equivalent stress is 1066.5 MPa, which is 14.5% higher than the second one (912.0 MPa), and that the stress convergence is very severe in the bridge, this part is apt to produce crack. The initial value of the design variables R1, R2, H, q1, and q2 were 75.000 mm, 88.000 mm, 80.000 mm, 30.000, and 30.000, respectively, and the maximum equivalent stress smax= 1066.5 MPa. In the 21 iterations, the optimum iteration was the eighteenth. The design variable values were R1=65.048 mm, R2=80.065 mm, H = 89.596 mm, q1=30.642, q2=20.045. The maximum equivalent stress smax= 723.1 MPa, which is 27% less. The optimum results are shown in Table 4.4 Conclusions 1) Based on ANSYS software, its second development language APDL was used to develop a 3-D model of the hot extrusion die that extrudes aluminium profile has been obtained. 2) The 3-D stress distribution was very uneven, with severe stress concentrations in the bridge of the hot extrusion die. The optimal geometric design had 27% lower maximum stress, A better die will not only reduce die number but also reduce time lost changing dies, which will greatly heighten productivity. 3)Die cantilever design of large-scale streaming into false structure Not only is effective to reduce the pressure on the mold to take greater positive die as a result of dangerous sections of the fracture. greatly extend the life of the die, but this can not bring streaming bridge structure also more effective to reduce the thickness of the bottom die velocity, the velocity Extruded ensure a balanced, stable. Meanwhile, the structural design of the extrusion die for the wide disparity in thickness solid Profile Die Design, opened up a new way of thinking and approach. References1 Karacs G. Computer aided methods for die design. Proceedings of the Conference on Mechanical Engineering, 1998, 2: 463-466.2Mueller G. Design optimization with the finite element program ANSYS. International Journal of Computer Applications in Technology, 1994, 7: 271-277.作者: 帥詞俊; 肖剛; 倪正順;英文作者: SHUAI Cijun *; XIAO Gang; NI Zhengshun College of Mechanical and Electronic Engineering; Central South University; Changsha; China;刊名:Tsinghua Science and Technology , 清華大學(xué)學(xué)報(英文版), 編輯部郵箱 2004年 03期查詢來源: 中國學(xué)術(shù)期刊全文數(shù)據(jù)庫查詢網(wǎng)址:http:/59.69.171.7/kns50/scdbsearch/scdetail.aspx?QueryID=14&CurRec=1熱擠壓模具的優(yōu)化設(shè)計摘要:熱擠壓模具立體模型開發(fā)利用ANSYS軟件及其二次開發(fā)語言ANSYS的參數(shù)設(shè)計,進行有限元分析和優(yōu)化設(shè)計。熱擠壓模具的三維應(yīng)力分布很不均勻,懸臂梁有嚴(yán)重的應(yīng)力集中。獲得最佳層面,數(shù)據(jù)結(jié)果表明最佳的高度是89.59630.1+5.6。擠壓模分流孔是最佳半徑 80.06565.048毫米和毫米,應(yīng)力集中減少了27%。關(guān)鍵詞:三位一體方式,造型,熱擠壓模具,優(yōu)化設(shè)計引言 隨著生活水平的不斷提高,由于鋁合金型材的導(dǎo)熱性能較好,鋁零件廣泛應(yīng)用于生活中的每一環(huán)節(jié)。因此,在鋁合金的擠壓型材中,各種類型的散熱器型材已被廣泛地應(yīng)用在電器、機械等行業(yè)中。產(chǎn)品變的日趨多樣化、復(fù)雜化和高精密度化,擠壓模具是基礎(chǔ)的擠壓工藝。它不僅決定著產(chǎn)品形態(tài)、大小、精度和表面狀態(tài),而且影響到產(chǎn)品的性能。所以擠壓模具是擠壓技術(shù)的關(guān)鍵。 擠壓模具研究改進質(zhì)量和延長其壽命通常試圖將三維有限元模型簡化為二維,但只不過是構(gòu)造簡單的結(jié)構(gòu)形狀。沒有三維有限元分析,其結(jié)果不能給制造業(yè)提供實際幫助和提供有用的資訊。本文主要介紹鋁型材擠壓模具優(yōu)化設(shè)計模型。1實體造型 圖1主要顯示一種平面組合的熱擠壓模具。其外部直徑為227.000毫米,其高度為80.000毫米。其他參數(shù)見圖1,建模方法如下:1.1坐標(biāo)P1和P5 直線L(y = kx + b)和圓弧(x2 + y2 =R2)之間的相交點坐標(biāo)是 1.2坐標(biāo)P2和P6 直線L1(y = kx + b)和直線L2(y =S1)之間的相交點坐標(biāo)P2是 直線L3(y = kx + b)和直線L4(y =S1)之間的相交點坐標(biāo)P6是 1.3 坐標(biāo)P3, P4, P7, 和 P8 P3和P1是關(guān)于Y軸對稱。P4和P2也是關(guān)于Y軸對稱。P7和P5是關(guān)于X軸對稱。P8和P6也是關(guān)于X軸對稱。1.4 變量方程 由公式(1)-(6),得點P1和P2,和R = R1.得點P5和P6,和R = R2。 R1,R2,T1,T2,S1和S2是沿著高度(h)的變化規(guī)律來表達模具的功能R1=f1(z),R2=f2(z),T1=f3(z),T2=f4(z),S1=f5 (z),和S2=f6(z),z 0, H。1.5 在一些高度的部分形狀 用直線連接P1-P4, P5-P8,蘗與圓弧相交于點(P1-P8),在一些高度獲得了部分形狀。1.6 在每一高度的部分形狀 高度劃分為若干界面(微粒)等部分(微粒決定著精密,如果微粒較高的,精度更佳)。在每節(jié)高度形狀如圖2所示。 1.7 光滑曲面 在ANSYS使用表面指揮,順利沿直線建立曲面,他們是影響面孔。利用VA(它利用現(xiàn)有的面積產(chǎn)生一定容量)指揮,從創(chuàng)立了堅實的表面。1.8 對稱性模具 主體和核心的模具畫圖時用布爾操作增加,減掉等(圖3)。對稱性模具用于加速計算時使用的有限元分析模型為1/4-實體模型(圖4)。 2 計算模型 用擠壓鋁合金(6063Al-Mg-Si)的一個平面模具來作為例子。鋁的液相是6579,Al+Mg2Si的熔體溫度是558??紤]到產(chǎn)品質(zhì)量和擠壓壓力,工作溫度定為450。 模具材料是4Cr5MoSiV1(H13)。下面是450,它的華模和泊松比分別是210GPa和0.25。其屈服強度是1200mpa,摩擦系數(shù)是0.3。固92通過免費網(wǎng)用來傳送三維實體元素。為了負荷的摩擦力而擠壓,表面效應(yīng)單元154經(jīng)常被用來生產(chǎn)組合體(圖5)。用擠壓機為1600噸,擠壓強度計算公式為(7)10。其值見列表1。 橋梁倒塌經(jīng)常是由于擠壓,其高度和力量是分布在分流洞。本文中,高度(H)和半徑(R1 and R2) 是分流孔的設(shè)計變量,作為最高壓力(smax) 相當(dāng)于作為目標(biāo)的功能。設(shè)計可變幅度如下列表2. 3 計算結(jié)果 圖6相當(dāng)于應(yīng)力圖。從圖6中我們能看見最大的壓力是在橋臂上,預(yù)計最大應(yīng)力值等于24 從大至小見列表3。數(shù)據(jù)顯示,最高相當(dāng)于節(jié)點應(yīng)力1066.5 MPa,這是14.5%,高于二之一(912.0 MPa),這是非常嚴(yán)重的收斂壓力,在懸臂上這部分是容易產(chǎn)生裂縫的。 初步設(shè)計變量值R1, R2, H, q1, and q2 分別是75.000 mm,88.000 mm, 80.000 mm, 30.000, and 30.000,最大當(dāng)量應(yīng)力 smax= 1066.5 MPa。在迭代21時 ,最佳迭代是第十八。設(shè)計變量值R1=65.048 mm, R2=80.065 mm, H = 89.596 mm, q1=30.642, q2=20.045。最高壓力相當(dāng)于 smax= 723.1 MPa, 即減少27%。 最佳結(jié)果見如下列表4。4 結(jié)論 1) 基于ANSYS軟件,三維模型用于研制二次開發(fā)語言APDL,它是根據(jù)鋁熱擠壓模具概況取得。 2) 熱擠壓模具的三維應(yīng)力分布很不均勻,懸臂梁有嚴(yán)重的應(yīng)力集中。 最優(yōu)幾何設(shè)計最大應(yīng)力降低了27%, 一個好的模具不但可減少模具加工人數(shù)也減少改變模具損失的時間,這將大大提高生產(chǎn)率。 3)將大懸臂的鋁型材模具設(shè)計成假分流模的結(jié)構(gòu),不僅有效地減小了由于模具承受較大的正面壓力所導(dǎo)致的??孜kU斷面的斷裂,極大地延長了模具的使用壽命,而且,這種帶不分流橋的結(jié)構(gòu),還有效地減小了??椎撞枯^大壁厚處的流速,確保了擠壓型材流速的均衡、平穩(wěn)。同時,這種結(jié)構(gòu)的擠壓模具設(shè)計方案,為壁厚相差懸殊的實心型材模具的設(shè)計,開辟了新的思路和途徑。參考文獻1Karacs G. Computer aided methods for die design. Proceedings of the Conference on Mechanical Engineering, 1998, 2: 463-4662Mueller G. Design optimization with the finite element program ANSYS. International Journal of Computer Applications in Technology, 1994, 7: 271-277 11 / 12
收藏