2019-2020年高二數(shù)學(xué) 《向量的坐標(biāo)表示及其運(yùn)算》教案(2) 滬教版.doc
《2019-2020年高二數(shù)學(xué) 《向量的坐標(biāo)表示及其運(yùn)算》教案(2) 滬教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高二數(shù)學(xué) 《向量的坐標(biāo)表示及其運(yùn)算》教案(2) 滬教版.doc(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高二數(shù)學(xué) 向量的坐標(biāo)表示及其運(yùn)算教案(2) 滬教版一、教學(xué)內(nèi)容分析向量是研究數(shù)學(xué)的工具,是學(xué)習(xí)數(shù)形結(jié)合思想方法的直觀而又生動(dòng)的內(nèi)容.向量的坐標(biāo)以及向量運(yùn)算的坐標(biāo)形式,則從“數(shù)、式”的角度對(duì)向量以及向量的運(yùn)算作了精確的、定量的描述.本節(jié)課是8.1向量的坐標(biāo)及其運(yùn)算的第二課時(shí),一方面把“形”與 “數(shù)、式”結(jié)合起來(lái)思考,以“數(shù)”入微,借“形”思考,體會(huì)并感悟數(shù)形結(jié)合的思維方式;另一方面通過(guò)例5的演繹推理教學(xué),體會(huì)代數(shù)證明的嚴(yán)謹(jǐn)性,也為下節(jié)課定比分點(diǎn)(三點(diǎn)共線)的教學(xué)提供基礎(chǔ).二、教學(xué)目標(biāo)設(shè)計(jì)1掌握向量模的求法,知道模的幾何意義;2理解并掌握兩個(gè)非零向量平行的充要條件,鞏固加深充要條件的證明方式;3會(huì)用平行的充要條件解決點(diǎn)共線問(wèn)題;4感悟向量作為工具解題的優(yōu)越性.三、教學(xué)重點(diǎn)及難點(diǎn)課本例5的演繹證明;分類思想,數(shù)形結(jié)合思想在解決問(wèn)題時(shí)的運(yùn)用;特殊一般特殊的探究問(wèn)題意識(shí).問(wèn)題一引入四、教學(xué)流程設(shè)計(jì)向量平行的充要條件三點(diǎn)共線的充要條件問(wèn)題二解決問(wèn)題三解決課堂小結(jié)作業(yè)反思,形成問(wèn)題創(chuàng)設(shè)問(wèn)題情景問(wèn)題探究反思知識(shí)拓展應(yīng)用課外探索學(xué)習(xí)模的求法五、教學(xué)過(guò)程設(shè)計(jì) 創(chuàng)設(shè)問(wèn)題情景問(wèn)題一、已知向量.(1)在坐標(biāo)平面上,畫出向量;并求= (2)若向量終點(diǎn)Q坐標(biāo)為,則向量的始點(diǎn)P坐標(biāo)為_(kāi);(3)向量的模與兩點(diǎn)P、Q間距離關(guān)系是 .若 ,則練習(xí)1:已知向量,求說(shuō)明 在問(wèn)題一中,先給出向量,要求學(xué)生在坐標(biāo)平面上畫出向量,增強(qiáng)數(shù)形結(jié)合的解題意識(shí),感悟向量的模即平面上兩點(diǎn)的距離.由此發(fā)現(xiàn)并掌握向量模的求法及幾何意義.安排(2)小問(wèn)的目的在于復(fù)習(xí)鞏固位置向量與自由向量的概念,體會(huì)并感悟到任何一個(gè)自由向量都可轉(zhuǎn)化為位置向量.通過(guò)自由向量與位置向量的學(xué)習(xí),引出向量平行的概念.向量平行的概念:對(duì)任意兩個(gè)向量,若存在一個(gè)常數(shù),使得成立,則兩向量與向量平行,記為:.問(wèn)題探究反思問(wèn)題二.在坐標(biāo)平面上描出下列三點(diǎn),完成下列問(wèn)題:(1)請(qǐng)把下列向量的坐標(biāo)與模填在表格內(nèi):向量坐標(biāo)(1,2)(2,4)(3,6)向量的模(2)通過(guò)畫圖,你得出什么結(jié)論?三點(diǎn)A、B、C在一條直線上(3)分析表格中向量的模,你發(fā)現(xiàn)了什么? (4)分析表格中向量,你還發(fā)現(xiàn)了什么?,說(shuō)明 養(yǎng)成解題后反思的習(xí)慣,總結(jié)如何判斷三點(diǎn)共線?方法一:計(jì)算三個(gè)向量的模長(zhǎng)關(guān)系.方法二:看兩個(gè)非零向量之間是否存在非零常數(shù).(5)分析表格中向量坐標(biāo),你又發(fā)現(xiàn)了什么?向量坐標(biāo)之間存在比例關(guān)系.思考:如果向量用坐標(biāo)表示為,則是的( )條件.A、充要 B、必要不充分 C、充分不必要 D、既不充分也不必要由此,通過(guò)改進(jìn)引出課本例5 若是兩個(gè)非零向量,且,則的充要條件是.分析:代數(shù)證明的方法與技巧,嚴(yán)密、嚴(yán)謹(jǐn).證明:分兩步證明,()先證必要性:非零向量存在非零實(shí)數(shù),使得,即,化簡(jiǎn)整理可得:,消去即得()再證充分性:(1)若,則、全不為零,顯然有,即(2)若,則、中至少有兩個(gè)為零.如果,則由是非零向量得出一定有,又由是非零向量得出,從而,此時(shí)存在使,即如果,則有,同理可證綜上,當(dāng)時(shí),總有所以,命題得證.說(shuō)明 本題是一典型的代數(shù)證明,推理嚴(yán)密,層次清楚,要求較高,是培養(yǎng)數(shù)學(xué)思維能力的良好范例.練習(xí)2:1已知向量,且,則x為_(kāi);2設(shè)=(x1,y1),=(x2,y2),則下列與共線的充要條件的有( ) 存在一個(gè)實(shí)數(shù),使=或=; ;(+)/()A、0個(gè) B、1個(gè) C、2個(gè) D、3個(gè)3設(shè)為單位向量,有以下三個(gè)命題:(1)若為平面內(nèi)的某個(gè)向量,則;(2)若與平行,則;(3)若與平行且,則.上述命題中,其中假命題的序號(hào)為 ;說(shuō)明 安排此組練習(xí)快速鞏固所學(xué)基礎(chǔ)知識(shí),當(dāng)堂消化,及時(shí)反饋.知識(shí)拓展應(yīng)用問(wèn)題三:已知向量,且A、B、C三點(diǎn)共線,則k=_ (學(xué)生討論與分析)說(shuō)明 三點(diǎn)共線的證明方法總結(jié)法一:利用向量的模的等量關(guān)系法二:若A、B、C三點(diǎn)滿足,則A、B、C三點(diǎn)共線.*法三:若A、B、C三點(diǎn)滿足,當(dāng)時(shí),A、B、C三點(diǎn)共線.課外探索學(xué)習(xí)課外作業(yè):1練習(xí)冊(cè)P38:4、5、6、7補(bǔ)充作業(yè):1關(guān)于非零向量和,有下列四個(gè)命題:(1)“”的充要條件是“和的方向相同”;(2)“” 的充要條件是“和的方向相反”;(3)“” 的充要條件是“和有相等的?!?;(4)“” 的充要條件是“和的方向相同”;其中真命題的個(gè)數(shù)是 ( )A 1 B. 2 C. 3 D. 42質(zhì)點(diǎn)P在平面上作勻速直線運(yùn)動(dòng),速度向量=(4,3)(即點(diǎn)P的運(yùn)動(dòng)方向與相同,且每秒移動(dòng)的距離為|v|個(gè)單位.設(shè)開(kāi)始時(shí)點(diǎn)P的坐標(biāo)為(10,10),則5秒后該質(zhì)點(diǎn)P的坐標(biāo)為( )A(2,4)B(30,25)C(10,5)D(5,10)3已知向量,則的最大值為 .4設(shè)C、D為直線上不重合的兩點(diǎn),對(duì)于坐標(biāo)平面上動(dòng)點(diǎn),若存在實(shí)數(shù)使得,則= .5在直角坐標(biāo)系xOy中,已知點(diǎn)和點(diǎn),若點(diǎn)C在AOB的平分線上,且,則=_.6已知(5,4),(3,2),求與23平行的單位向量.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 向量的坐標(biāo)表示及其運(yùn)算 2019-2020年高二數(shù)學(xué) 向量的坐標(biāo)表示及其運(yùn)算教案2 滬教版 2019 2020 年高 數(shù)學(xué) 向量 坐標(biāo) 表示 及其 運(yùn)算 教案
鏈接地址:http://m.appdesigncorp.com/p-2616652.html