2019-2020年高三數(shù)學總復習 邏輯聯(lián)結詞教案 理.doc
《2019-2020年高三數(shù)學總復習 邏輯聯(lián)結詞教案 理.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高三數(shù)學總復習 邏輯聯(lián)結詞教案 理.doc(5頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高三數(shù)學總復習 邏輯聯(lián)結詞教案 理教材分析在初中階段,學生已接觸了一些簡單命題,對簡單的推理方法有了一定程度的了解在此基礎上,這節(jié)課首先從簡單命題出發(fā),給出含有“或”、“且”、“非”的復合命題的概念,然后借助真值表,給出判斷復合命題的真假的方法在高中數(shù)學中,邏輯聯(lián)結詞是學習、掌握和使用數(shù)學語言的基礎,是高中數(shù)學學習的出發(fā)點因此,在教學過程中,除了關注和初中知識密切的聯(lián)系之外,還應借助實際生活中的具體例子,以便于學生理解和掌握邏輯聯(lián)結詞教學重點是判斷復合命題真假的方法,難點是對“或”的含義的理解教學目標1. 理解邏輯聯(lián)結詞“或”、“且”、“非”的含義,了解“或”、“且”、“非”的復合命題的構成2. 能熟練判斷一些復合命題的真假性3. 通過邏輯聯(lián)結詞的學習,使學生初步體會數(shù)學語言的嚴密性,準確性,并在今后數(shù)學學習和交流中,能夠準確運用邏輯聯(lián)結詞任務分析在初中數(shù)學中,學生已經學習了一些關于命題的初步知識,但是,對命題和開語句的區(qū)別往往搞不清因此,應首先讓學生弄懂命題的含義,以便其掌握復合命題由于邏輯中的“或”、“且”、“非”與日常用語中的“或”、“且”、“非”的意義不完全相同,故要直接講清楚它們的意義,比較困難因此,開始時,不必深講,可以在學習了有關復合命題的真值表之后,再要求學生根據(jù)復合命題的真值表,對“或”、“且”、“非”加以理解,這樣處理有利于掌握重點,突破難點為了加深對“或”、“且”、“非”的理解,最后應設計一系列的習題加以鞏固、深化對知識的認識程度教學設計一、問題情境生活中,我們要經常用到許多有自動控制功能的電器例如,洗衣機在甩干時,如果“到達預定的時間”或“機蓋被打開”,就會停機,即當兩個條件至少有一個滿足時,就會停機與此對應的電路,就叫或門電路又如,電子保險門在“鑰匙插入”且“密碼正確”兩個條件都滿足時,才會開啟與此對應的電路,就叫與門電路隨著高科技的發(fā)展,諸多科學領域均離不開類似以上的邏輯問題因此,我們有必要對簡易邏輯加以研究二、建立模型在初中,我們已學過命題,知道可以判斷真假的語句叫作命題試分析以下8個語句,說出哪些是命題,哪些不是命題,哪些是真命題,哪些是假命題(1)125(2)3是12的約數(shù)(3)是整數(shù)(4)是整數(shù)嗎?(5)x(6)10可以被2或5整除(7)菱形的對角線互相垂直且平分(8)不是整數(shù)(可以讓學生回答,教師給出點評)我們可以看出,(1)(2)是真命題;(3)是假命題;因為(4)不涉及真假;(5)不能判斷真假,所以(4)(5)都不是命題;(6)(7)(8)是真命題其中,“或”、“且”、“非”這些詞叫作邏輯聯(lián)結詞像(1)(2)(3)這樣的命題,不含邏輯聯(lián)結詞,叫簡單命題;像(6)(7)(8)這樣,由簡單命題與邏輯聯(lián)結詞構成的命題,叫復合命題如果用小寫的拉丁字母p,q,r,s,來表示命題(這里應明確(6)(7)(8)三個命題中p,q分別代表什么),則上述復合命題(6)(7)(8)的構成形式分別是p或q,p且q,非p其中,非p也叫作命題p的否定對于以上三種復合命題,如何判斷其真假呢?下面要求學生自己設計或真或假的命題來填下面表格:結合學生回答情況,將上面的表格補充完整,并給出真值表的定義要求學生對每一真值表用一句話總結:(1)“非p”形式的復合命題的真假與p的真假相反(2)“p且q”形式的復合命題當p與q同為真時為真,其他情況時為假(3)“p或q”形式的復合命題當p與q同為假時為假,其他情況時為真三、解釋應用例題1. 分別指出下列各組命題構成的“p或q”、“p且q”、“非p”形式的復合命題的真假(1)p:225,q:32(2)p:9是質數(shù),q:8是12的約數(shù)(3)p:11,2,q:11,2(4)p:0,q:0注:引導學生進一步熟悉真值表2. 說出下列復合命題的形式,并判斷其真假(1)55(2)51解:(1)p或q形式其中,p:55,q:55p假,q真,p或q為真,即55為真命題(2)p或q形式其中,p:54,q:54,p真,q假,p或q為真,即54為真命題練習1. 命題:方程x210的解是x1,使用邏輯聯(lián)結詞的情況是()A. 沒用使用邏輯聯(lián)結詞B. 使用邏輯聯(lián)結詞“且”C. 使用邏輯聯(lián)結詞“或”D. 使用邏輯聯(lián)結詞“非”(C)2. 由下列命題構成的“p或q”、“p且q”形式的復合命題均為真命題的是()A. p:449,q:74B. p:aa,b,c,q:a,C. p:15是質數(shù),q:4是12的約數(shù)D. p:2是偶數(shù),q:2不是質數(shù)(B)四、拓展延伸在一些邏輯問題中,當字面上并未出現(xiàn)“或”、“且”、“非”字樣時,應從語句的陳述中搞清含義,從而解決問題例:小李參加全國數(shù)學聯(lián)賽,有三名同學對他作如下猜測:甲:小李非第一名,也非第二名;乙:小李非第一名,而是第三名;丙:小李非第三名,而是第一名競賽結束后發(fā)現(xiàn),一人全猜對,一人猜對一半,一人全猜錯,問:小李得了第幾名?由上可知:甲、乙、丙均為“p且q”形式,所以猜對一半者也說了錯誤“命題”,即只有一個為真,所以可知是丙是真命題,因此小李得了第一名還有一些邏輯問題,應從命題與命題之間關系去尋找解題思路例:曾經在校園內發(fā)生過這樣一件事:甲、乙、丙、丁四名同學在教室前的空地上踢足球,忽然足球飛向了教室的一扇窗戶,聽到響聲后,李主任走了過來,看著一地碎玻璃,問道:“玻璃是誰打破的?”甲:是乙打破的;乙:不是我,是丁打破的;丙:肯定不是我打破的;?。阂以谌鲋e現(xiàn)在只知道有一個人說了真話,請你幫李主任分析:誰打破了玻璃,誰說了真話分析此題關鍵在于找清乙說的與丁說的是“p”與“非p”形式,因此說真話者可能是乙,也可能不是乙,是丁由此分析可知,是丙打破的玻璃點評這篇案例的突出特點是對知識的認知由淺入深,層層漸進這篇案例的所有例子均結合學生的數(shù)學水平取自學生掌握的知識范圍之內或者直接源于現(xiàn)實生活,這有利于學生對問題的實質的理解和掌握如果在“建立模型”的結束時及時給出相關的例子,使學生正確區(qū)分哪些是簡單命題,哪些是復合命題,學生的印象會更深- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高三數(shù)學總復習 邏輯聯(lián)結詞教案 2019 2020 年高 數(shù)學 復習 邏輯 聯(lián)結 教案
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-2615736.html