2019-2020年高中數(shù)學(xué) 第一章《算法案例》教案3 新人教A版必修3.doc
《2019-2020年高中數(shù)學(xué) 第一章《算法案例》教案3 新人教A版必修3.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第一章《算法案例》教案3 新人教A版必修3.doc(4頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第一章《算法案例》教案3 新人教A版必修3 (1)教學(xué)目標(biāo) (a)知識(shí)與技能 了解各種進(jìn)位制與十進(jìn)制之間轉(zhuǎn)換的規(guī)律,會(huì)利用各種進(jìn)位制與十進(jìn)制之間的聯(lián)系進(jìn)行各種進(jìn)位制之間的轉(zhuǎn)換。 (b)過程與方法 學(xué)習(xí)各種進(jìn)位制轉(zhuǎn)換成十進(jìn)制的計(jì)算方法,研究十進(jìn)制轉(zhuǎn)換為各種進(jìn)位制的除k去余法,并理解其中的數(shù)學(xué)規(guī)律。 (c)情態(tài)與價(jià)值 領(lǐng)悟十進(jìn)制,二進(jìn)制的特點(diǎn),了解計(jì)算機(jī)的電路與二進(jìn)制的聯(lián)系,進(jìn)一步認(rèn)識(shí)到計(jì)算機(jī)與數(shù)學(xué)的聯(lián)系。 (2)教學(xué)重難點(diǎn) 重點(diǎn):各進(jìn)位制表示數(shù)的方法及各進(jìn)位制之間的轉(zhuǎn)換 難點(diǎn):除k去余法的理解以及各進(jìn)位制之間轉(zhuǎn)換的程序框圖的設(shè)計(jì) (3)學(xué)法與教學(xué)用具 學(xué)法:在學(xué)習(xí)各種進(jìn)位制特點(diǎn)的同時(shí)探討進(jìn)位制表示數(shù)與十進(jìn)制表示數(shù)的區(qū)別與聯(lián)系,熟悉各種進(jìn)位制表示數(shù)的方法,從而理解十進(jìn)制轉(zhuǎn)換為各種進(jìn)位制的除k去余法。 教學(xué)用具:電腦,計(jì)算器,圖形計(jì)算器 (4)教學(xué)設(shè)想 (一)創(chuàng)設(shè)情景,揭示課題 我們常見的數(shù)字都是十進(jìn)制的,但是并不是生活中的每一種數(shù)字都是十進(jìn)制的.比如時(shí)間和角度的單位用六十進(jìn)位制,電子計(jì)算機(jī)用的是二進(jìn)制.那么什么是進(jìn)位制?不同的進(jìn)位制之間又又什么聯(lián)系呢? (二)研探新知 進(jìn)位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值。可使用數(shù)字符號(hào)的個(gè)數(shù)稱為基數(shù),基數(shù)為n,即可稱n進(jìn)位制,簡(jiǎn)稱n進(jìn)制?,F(xiàn)在最常用的是十進(jìn)制,通常使用10個(gè)阿拉伯?dāng)?shù)字0-9進(jìn)行記數(shù)。 對(duì)于任何一個(gè)數(shù),我們可以用不同的進(jìn)位制來表示。比如:十進(jìn)數(shù)57,可以用二進(jìn)制表示為111001,也可以用八進(jìn)制表示為71、用十六進(jìn)制表示為39,它們所代表的數(shù)值都是一樣的。 表示各種進(jìn)位制數(shù)一般在數(shù)字右下腳加注來表示,如111001(2)表示二進(jìn)制數(shù),34(5)表示5進(jìn)制數(shù). 電子計(jì)算機(jī)一般都使用二進(jìn)制,下面我們來進(jìn)行二進(jìn)制與十進(jìn)制之間的轉(zhuǎn)化 例1 把二進(jìn)制數(shù)110011(2)化為十進(jìn)制數(shù). 解:110011=1*25+1*24+0*23+1*24+0*22+1*21+1*20 =32+16+2+1 =51 例2 把89化為二進(jìn)制數(shù). 解:根據(jù)二進(jìn)制數(shù)滿二進(jìn)一的原則,可以用2連續(xù)去除89或所得商,然后去余數(shù). 具體的計(jì)算方法如下: 89=2*44+1 44=2*22+0 22=2*11+0 11=2*5+1 5=2*2+1 所以:89=2*(2*(2*(2*(2*2+1)+1)+0)+0)+1 =1*26+0*25+1*24+1*23+0*22+0*21+1*20 =1011001(2) 這種算法叫做除2取余法,還可以用下面的除法算式表示: 89 44 22 11 5 2 1 2 2 2 2 2 2 2 0 余數(shù) 1 0 0 1 1 0 1 把上式中的各步所得的余數(shù)從下到上排列即可得到89=1011001(2) 上述方法也可以推廣為把十進(jìn)制化為k進(jìn)制數(shù)的算法,這種算法成為除k取余法. 當(dāng)數(shù)字較小時(shí),也可直接利用各進(jìn)位制表示數(shù)的特點(diǎn),都是以冪的形式來表示各位數(shù)字,比如2*103表示千位數(shù)字是2,所以可以直接求出各位數(shù)字.即把89轉(zhuǎn)換為二進(jìn)制數(shù)時(shí),直接觀察得出89與64最接近故89=64*1+25 同理:25=16*1+9 9=8*!+1 即89=64*1+16*1+8*!+1=1*26+1*24+1*23+1*20 位數(shù) 6 5 4 3 2 1 0 數(shù)字 1 0 1 1 0 0 1 即89=1011001(2) 練習(xí):(1)把73轉(zhuǎn)換為二進(jìn)制數(shù) (2)利用除k取余法把89轉(zhuǎn)換為5進(jìn)制數(shù) 把k進(jìn)制數(shù)a(共有n位)轉(zhuǎn)換為十進(jìn)制數(shù)b的過程可以利用計(jì)算機(jī)程序來實(shí)現(xiàn),語句為: INPUT a,k,n i=1 b=0 WHILE i<=n t=GET a[i] b=b+t*k^(i-1) i=i+1 WEND PRINT b END 練習(xí):(1)請(qǐng)根據(jù)上述程序畫出程序框圖. 參考程序框圖: (2)設(shè)計(jì)一個(gè)算法,實(shí)現(xiàn)把k進(jìn)制數(shù)a(共有n位)轉(zhuǎn)換為十進(jìn)制數(shù)b的過程的程序中的GET函數(shù)的功能,輸入一個(gè)正5位數(shù),取出它的各位數(shù)字,并輸出. 小結(jié): (1)進(jìn)位制的概念及表示方法 (2)十進(jìn)制與二進(jìn)制之間轉(zhuǎn)換的方法及計(jì)算機(jī)程序 (5)評(píng)價(jià)設(shè)計(jì) 作業(yè):P38 A(4) 補(bǔ)充:設(shè)計(jì)程序框圖把一個(gè)八進(jìn)制數(shù)23456轉(zhuǎn)換成十進(jìn)制數(shù).- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 算法案例 2019-2020年高中數(shù)學(xué) 第一章算法案例教案3 新人教A版必修3 2019 2020 年高 數(shù)學(xué) 第一章 算法 案例 教案 新人 必修
鏈接地址:http://m.appdesigncorp.com/p-2615074.html